Plant pathogenic microbes cause significant economic damage to global food crop production systems. Pathogens are specialised microbes that manipulate the host defense circuitry to suppress immunity and promote virulence. Interest...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
Turbo-MPMI-Discovery
TurboID charging discovery of plant pathogen virulence and h...
213K€
Cerrado
ALBUGON
Genomics and effectoromics to understand defence suppression...
2M€
Cerrado
EIN2020-112304
DESCIFRANDO EL SISTEMA INMUNE DE LAS PLANTAS: ORIGEN Y EVOLU...
Cerrado
AY-WB Effectors
A characterization of the effectors of a plant pathogen
201K€
Cerrado
FungalSecrets
The role of plant microbiota in the evolution of fungal path...
2M€
Cerrado
IBIS
Identification of Basal Immunity mechanismS against plant pa...
194K€
Cerrado
Información proyecto RETRaIN
Líder del proyecto
UNIVERSITY OF DUNDEE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Plant pathogenic microbes cause significant economic damage to global food crop production systems. Pathogens are specialised microbes that manipulate the host defense circuitry to suppress immunity and promote virulence. Interestingly, many of the processes that determine immunity or susceptible interactions, take place in the host nucleus. With the identification of vast repertoires of (nuclear) secreted pathogen proteins (effectors) and host signaling components that extert their functions in the nucleus, this host compartment is now considered an important interface where outcomes are decided.
This proposal aims to unravel the molecular mechanisms that underpin infection outcomes in the nucleus. A powerfull approach that will combine quantitative proteomics with gene expression analyses will be used to (i) detect pathogen effectors in the host nucleus in situ and (ii) identify changes in the nuclear proteome during infection. I will then use Yeast two Hybrid and immunoprecipitation to identify effector host targets before placing these components in a nuclear immune signalling context. New information on effector-induced changes in the host nuclear proteome coupled to immune signalling, will then be used to rationalise implementation of two synthetic approaches towards resistance.
I will design synthetic (non)host targets that are immune to effector induced modifications and function towards immunity. In addition, identification of key effectors and targets will be used to design new R-gene like specificities, embodied in synthetic Nucleotide-Binding Leucine Rich Repeat proteins (sNB-LRR). Overall, this work will impact studies on host-microbe interactions and importantly, will provide proof of concept for two new synthetic breeding strategies in plants.