Revolutionizing Spatial Biology with a cutting edge Multi Scale Imaging platform
The NanoSCAN project aims to transform tissue analysis with a novel 3D spatial biology platform that provides crucial insights into cellular and tissue functions. Spatial biology visualizes the interaction of molecules with their...
ver más
30/09/2026
Líder desconocido
2M€
Presupuesto del proyecto: 2M€
Líder del proyecto
Líder desconocido
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2023-10-10
Este proyecto no cuenta con búsquedas de partenariado abiertas en este momento.
Información adicional privada
No hay información privada compartida para este proyecto. Habla con el coordinador.
Participantes
Conecta tu I+D
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto NanoSCAN
Duración del proyecto: 35 meses
Fecha Inicio: 2023-10-10
Fecha Fin: 2026-09-30
Líder del proyecto
Líder desconocido
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The NanoSCAN project aims to transform tissue analysis with a novel 3D spatial biology platform that provides crucial insights into cellular and tissue functions. Spatial biology visualizes the interaction of molecules with their 3D environment, which is essential for cell and tissue screening. However, most spatial biology imaging technologies, based on wide-field microscopy, have limited spatial resolution and insufficient molecular profiling. A major obstacle to quantitative tissue imaging progress is the lack of a single instrument that can cover various complementary scales from tissue to molecule with high speed, high throughput, and high accuracy.
To address these limitations, we propose to develop a new imaging platform, the SAFe-nSCAN, which combines multi-scale optical microscopy solutions, from structured illumination microscopy for rapid cell and tissue inspection and classification to single-molecule localization microscopy techniques for deeper and higher nanoscopic 3D information over preselected regions. We will use an innovative chip-based technology developed under the PROCHIP FET-OPEN project (801336) to ensure robustness and accuracy of the measurements. We will validate and deploy this technology in relevant applications, with a focus on immuno-oncology, to advance personalized therapies.
The consortium consists of academic partners who will develop the technology, a non-profit association that will facilitate beta testing and promote the technology, and an SME that will collaborate with a new startup company to manufacture chips and bring molecular resolution spatial biology to the market.