Revolutionizing Mirror Technology to Discover the Dark Universe
The first detection of gravitational waves, and in particular the observation of merging black holes, which otherwise appear 'dark', has been one of the most exciting scientific achievements of the last decades. With the next gene...
ver más
Descripción del proyecto
The first detection of gravitational waves, and in particular the observation of merging black holes, which otherwise appear 'dark', has been one of the most exciting scientific achievements of the last decades. With the next generation of even more sensitive detectors, we plan to be able to see gravitational waves from objects as far away as the edge of the observable universe. However, a major limitation to the sensitivity of these detectors is the thermal noise of their core components: the highly-reflective coated interferometer mirrors.
The use of cryogenic temperatures will be a major step forward in thermal-noise reduction. However, with current coating technology, the sensitivity goals of next generation detectors cannot be met, not to mention further upgrades or future detector generations: (a) All amorphous coating materials, identified so far, with low thermal noise at low temperatures, show too high optical absorption. (b) Single-crystalline coatings can show both low thermal noise and low absorption, but come with different obstacles such as limitations on the size and material combinations, or different noise mechanisms e.g. from bonding the coating to the mirror.
I plan to explore a completely new path to realize coating-free mirrors: The use of ion implantation to create a highly-reflective multilayer structure directly inside the silicon mirror substrate. My main hypothesis is that the implantation procedure preserves the excellent optical and thermal-noise properties of crystalline materials, which cannot be met by amorphous coatings, while not imposing the limitations of single-crystalline coatings. A successful realization of such mirrors will solve the coating thermal noise issue in gravitational-wave detection entirely, allowing for an unhindered view into the Universe.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.