Revolutionizing diabetes management by combining in silico models and AI control...
Revolutionizing diabetes management by combining in silico models and AI control for vagus neuroprostheses
Diabetes is a major world health problem, approaching epidemic proportions and causing long term health damages due to inappropriate blood glucose regulation. Pharmacological therapies are limited by numerous side effects (as rena...
Diabetes is a major world health problem, approaching epidemic proportions and causing long term health damages due to inappropriate blood glucose regulation. Pharmacological therapies are limited by numerous side effects (as renal insufficiency or heart failure) and dose management issues. Their efficacy is also hindered by often problematic, patients’ compliance. This results in an unmet need for automatized, closed-loop glucose metabolism regulation, adaptable to variable patients’ conditions. Vagus nerve (VN) is a major component of the autonomous nervous system innervating internal organs, and its electrical stimulation showed preliminary results in modulating glucose metabolism. However, underlying mechanisms remain unknown, posing a high-risk to its feasibility, and could lead to indiscriminate stimulation causing multiple side effects (compromising breathing or heart rate). Fine glucose regulation cannot be achieved without better understanding of nerve-implant interaction and circuits stimulated by VNS. I aim to fill present scientific gaps by developing the first VNS neuroprosthesis for personalized closed-loop-regulation of glucose levels in diabetics. This results in a significant challenge: defining stimulation policies able to selectively block or activate specific neural pathways, while counteracting metabolic shifts and implant-nerve alterations. To that aim I will exploit models-driven interface design and AI-based stimulation policies. Animal experiments will investigate the physiological responses to optimal policies, maximising glucose regulation while minimizing adverse events, inspecting both cervical and abdominal VNS. Optimal VNS will be validated in human trials achieving device assessment in patients. DiabetManager will shed light on the underlying mechanisms of VNS-mediated glucose metabolism control, while providing versatile VN in-silico model, unprecedent AI-architecture for its adaptive stimulation, and disruptive health treatment.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.