REVOLUTIONising WIND blade life-cycle through circular design and Condition-Base...
REVOLUTIONising WIND blade life-cycle through circular design and Condition-Based Monitoring using multifunctional self-sensing 3D printed bonded structures and a multi-modal machine learnin
The challenge of climate change poses a significant threat to humanity. It is essential to prioritise renewable and cost-effective energy sources while simultaneously reducing greenhouse gas emissions for the benefit of future gen...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CPP2021-008519
Sistema de detección de patologías en aerogeneradores median...
93K€
Cerrado
DPI2014-60881-R
VALUACION DE LA VIABILIDAD DE UN NUEVO PLANTEAMIENTO PARA EL...
95K€
Cerrado
RTI2018-102175-B-I00
DISEÑO DE MODELOS AVANZADOS DE SIMULACION DE AEROGENERADORES...
117K€
Cerrado
TED2021-132783B-I00
METODOS NUMERICOS AVANZADOS Y REDES NEURONALES PARA LA SALUD...
169K€
Cerrado
DPI2014-58427-C2-1-R
DESARROLLO Y VALIDACION DE SISTEMAS DE DETECCION DE FALLOS Y...
134K€
Cerrado
TED2021-129756B-C33
DIGITALIZACION DE PLATAFORMAS DE DESPEGUE/ATERRIZAJE DE SIST...
182K€
Cerrado
Información proyecto REVOLUTION_WIND
Duración del proyecto: 35 meses
Fecha Inicio: 2024-03-25
Fecha Fin: 2027-02-28
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The challenge of climate change poses a significant threat to humanity. It is essential to prioritise renewable and cost-effective energy sources while simultaneously reducing greenhouse gas emissions for the benefit of future generations. One of the primary solutions lies in the new generation of larger, segmented and more efficient wind blades.
The REVOLUTION_WIND project aims to enhance the circularity and damage tolerance of the new generation of larger and segmented wind blades by embedding a multifunctional self-sensing 3D printed structure within a reversible adhesive layer. The project will use a combination of supervised machine learning and experimental characterisation to devise a multi-modal monitoring system that can accurately predict the remaining useful life of the reversible adhesively bonded joints. The most cutting-edge outcome of REVOLUTION_WIND is a multifunctional 3D printed self-sensing structure that will work as an embedded reinforcement and generate input data for a machine learning framework for in-situ life assessment of the structural integrity of reversible adhesively bonded joints.
Finally, the successful implementation of REVOLUTION_WIND will contribute to achieving the European Green Deal's objective of establishing wind power as Europe's primary energy source while promoting a circular economy.