Revival of the Powerhouse How mitochondrial remodelling controls the energy met...
Revival of the Powerhouse How mitochondrial remodelling controls the energy metabolism of the malaria parasite to enable survival in different hosts
The mitochondrion of the malaria agent Plasmodium falciparum is critical for parasite survival and a confirmed drug target. The dynamic organelle undergoes a Plasmodium-specific membrane remodelling process to adapt to changing me...
ver más
31/12/2029
HELSINGIN YLIOPIST...
1M€
Presupuesto del proyecto: 1M€
Líder del proyecto
HELSINGIN YLIOPISTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2024-10-11
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto MitoReModel
Duración del proyecto: 62 meses
Fecha Inicio: 2024-10-11
Fecha Fin: 2029-12-31
Líder del proyecto
HELSINGIN YLIOPISTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The mitochondrion of the malaria agent Plasmodium falciparum is critical for parasite survival and a confirmed drug target. The dynamic organelle undergoes a Plasmodium-specific membrane remodelling process to adapt to changing metabolic conditions in different hosts. This remarkable transformation is thought to be driven by the arrangement of divergent ATP synthase and respiratory chain complexes into supramolecular assemblies, which shape the internal cristae membranes. However, the structures of both oxidative phosphorylation (OXPHOS) protein complexes and the underlying molecular mechanism are unknown. Having recently pioneered parasite OXPHOS complex structure determination, I will tackle this longstanding enigma by combining state-of-the-art parasitology, high-resolution and in situ structural techniques and functional analysis to reconstruct a stage-resolved molecular model of the parasite’s bioenergetic membrane and reveal the mechanism of membrane remodelling:
In Aim 1, we will adapt cutting-edge cultivation methods to unlock structural studies of P. falciparum OXPHOS complexes by generating enough sexual-stage mitochondria to perform electron cryo-tomography and visualize the reorganisation of the inner membrane in situ.
In Aim 2, we will develop a stage-resolved molecular model of the P. falciparum inner membrane and reveal its architecture by determining high-resolution cryo-EM structures of both OXPHOS complexes, investigating their membrane-shaping properties and revealing binding mechanisms of investigational cytochrome-b inhibitors to inform antimalarial drug discovery.
In Aim 3, we draw on new structural insights to perform functional characterisation in parasites and understand the role of parasite-specific subunits in mitochondrial remodelling, energy conversion and parasite fitness.
This integrated approach will deliver novel insights into the plasticity and small-molecule modulation of mitochondrial energy metabolism in malaria parasites.