Revealing the Transient Structures of Intrinsically Disordered Proteins by Micro...
Revealing the Transient Structures of Intrinsically Disordered Proteins by Microfluidics Enabled Hydrogen Deuterium Exchange
This Fellowship proposal will design, fabricate and test novel microfluidic chips for the study of intrinsically disordered proteins (IDPs) by Hydrogen-Deuterium Exchange coupled with Mass Spectrometry (HDX-MS). The research progr...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
HDXchip
Analysis of difficult proteins by microfluidic based hydro...
2M€
Cerrado
HDEM
High Definition Electron Microscopy Greater clarity via mul...
2M€
Cerrado
CTQ2013-41339-P
SINTESIS Y FUNCIONALIZACION DE ESTRUCTURAS DENDRIMERICAS BAP...
105K€
Cerrado
PHYSPROT
Determining Physical Properties of Heterogeneous Protein Com...
1M€
Cerrado
X-MIXING
Efficient mixing method at the microscale for Time Resolved...
198K€
Cerrado
SUPRAIMAGINGMACHINES
Ditopic Imaging Agents Interlocked Sensors and Machines
2M€
Cerrado
Información proyecto fastHDX for IDPs
Duración del proyecto: 24 meses
Fecha Inicio: 2018-03-14
Fecha Fin: 2020-03-31
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
200K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This Fellowship proposal will design, fabricate and test novel microfluidic chips for the study of intrinsically disordered proteins (IDPs) by Hydrogen-Deuterium Exchange coupled with Mass Spectrometry (HDX-MS). The research program will use thiol-ene polymerisation to form all components of the microchip allowing fast, reproducible and cheap fabrication. The microchips will incorporate multiple microfluidics channels of varying length and spatially restricted monolith plugs to allow sub-second HDX reactions to occur on-chip. The microchips will circumvent the extensive and error-prone sample pre-treatment steps of current commercial HDX-MS methodology. I will be trained in state-of-the-art HDX-MS technology and will learn how to perform site-specific, light-activated thiol-ene click-chemistry reactions. The microfluidic chips will be used to probe the transient conformational changes of three challenging IDPs of biological and pharmaceutical relevance: a-synuclein, proNerve Growth Factor (proNGF) and Epsin1. α-synuclein is an extensively characterised model IDP, shown by numerous biophysical techniques including HDX-MS to possess some regions of transient structure. α-synuclein will be used during microchip development, providing valuable proof-of-concept and a framework for which to further optimize microchip design if needed. I will then characterise the conformational states and interactions of proNGF; the cleavable pro-element is reported to be disordered, but there is little knowledge of its cellular roles. Previously unreported structural elements of Epsin1, an IDP shown to mediate lipid membrane curvature, will also be probed. HDX-MS will be complemented by electron transfer dissociation (ETD) and ion mobility separation (IM-MS).To be added