Revealing the Epigenetic Regulatory Network with Single Molecule Precision
Genes and genomic elements are packaged by chromatin structures that regulate their activity. The fundamental unit of chromatin is the nucleosome, composed of an octamer of histones. The large numbers of histone modifications, chr...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CHROMATINSYS
Systematic Approach to Dissect the Interplay between Chromat...
2M€
Cerrado
ATRUN
The influence of DNA sequence on the epigenome
222K€
Cerrado
PGC2018-098210-A-I00
UNA APROXIMACION GENOMICA Y PROTEOMICA AL ORIGEN Y EVOLUCION...
127K€
Cerrado
CHROMTOPOLOGY
Understanding and manipulating the dynamics of chromosome to...
2M€
Cerrado
PID2020-118423GB-I00
REGULACION DE LA DIRECCIONALIDAD TRANSCRIPCIONAL Y DE LA EST...
224K€
Cerrado
BFU2008-01976
DINAMICA DE LAS MODIFICACIONES DE LAS HISTONAS EN LA CROMATI...
85K€
Cerrado
Información proyecto SM-Epigen
Duración del proyecto: 60 meses
Fecha Inicio: 2018-10-31
Fecha Fin: 2023-10-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Genes and genomic elements are packaged by chromatin structures that regulate their activity. The fundamental unit of chromatin is the nucleosome, composed of an octamer of histones. The large numbers of histone modifications, chromatin remodelers and transcription factors (TFs) that interact with our genome has fuelled speculation that multiple elements act combinatorially to direct specific outcomes. However, the field lacks technologies for detection and analysis of such combinations, thus impeding our ability to test this hypothesis and shed light on human genome regulation.
Our recent proof-of-principle for a single-molecule system for mapping combinatorial chromatin modifications holds the technological solution. This powerful method can identify directly unique combinations of epigenetic marks and reveal regulatory modules that can only be ascertained by single-molecule studies.
The proposed project will scale-up and advance our technology to establish robust high-throughput systems for investigating combinatorial chromatin and TF interactions and identify their genomic locations, thus bridging the gap between single-molecule proteomics and genomics. We will apply it to address basic questions in epigenetic regulation during early development, and define the network of interactions between histone marks, DNA methylation and the core TFs in stem cells and differentiated cells. We will also harness our technology to reveal the tissue-of-origin of cell-free DNA circulating in our blood in the form of nucleosomes, and apply it to devise novel strategies for early detection of cancer and other diseases.
Successful implementation and dissemination of these novel systems will yield a transformative new technology for functional genomics that will unravel the chromatin language during early development. This work will open new research directions at the interface of genomics and proteomics, and pave the way for the development of therapeutic and diagnostic tools.