Revealing cellular behavior with single-cell multi-omics
Chemical reactions govern cellular behavior, and are revealed by analysis of small molecules involved in intracellular metabolism. Individual cells in biological systems continuously adapt to improve survival and biological functi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
READ-seq
Revealing the gene regulatory networks that govern cell mech...
174K€
Cerrado
LABIMO
Label-free single-molecule detection of complex biomolecule...
166K€
Cerrado
EQC2018-005153-P
Adquisición de un espectrómetro de análisis de masas de Alta...
453K€
Cerrado
SAF2015-70270-REDT
RED DE MEDICINA DE SISTEMAS E INTEGRACION DE TECNOLOGIAS OMI...
32K€
Cerrado
EQC2021-007485-P
SISTEMA DE IMAGEN MOLECULAR POR CITOMETRIA DE MASAS
816K€
Cerrado
EQC2019-006170-P
Plataforma de análisis metabólico en células vivas
198K€
Cerrado
Información proyecto X CELL
Duración del proyecto: 64 meses
Fecha Inicio: 2022-04-20
Fecha Fin: 2027-08-31
Líder del proyecto
UPPSALA UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Descripción del proyecto
Chemical reactions govern cellular behavior, and are revealed by analysis of small molecules involved in intracellular metabolism. Individual cells in biological systems continuously adapt to improve survival and biological function, making them chemically and behaviorally heterogeneous. Unraveling this heterogeneity is essential to realize the correlation to disease state and health, but it is masked in bulk analyses of millions of cells.
I propose to develop a groundbreaking analytical approach for multi-omics of living individual cells to reveal variability in cellular behavior. This will be achieved by coupling a microfluidic device that enables controlled chemical exposure of a cell, to an efficient ionization probe for on-line time-resolved mass spectrometric measurements. By measuring the dynamics of each cell’s metabolome, lipidome, and secretome, novel insights into heterogeneity in intracellular activities will be gained. In addition, the level of heterogeneity will be uncovered through correlation with the cell’s transcriptome.
A special emphasis will be given to characterize individual β-cells that are key regulators of blood glucose by insulin secretion and whose dysfunction leads to type 2 diabetes. The behavior of individual β-cells is heterogeneous and ranges from complete failure to secrete insulin to compensating with increased secretion. I will use the single-cell multi-omics approach to test the hypothesis that intracellular metabolism is the key to β-cell dysfunction, and analyze healthy and diabetic β-cells upon chemical exposure to establish i) their metabolic heterogeneity and differences, ii) variations and temporal dynamics in their metabolic behavior and iii) metabolic roadblocks that correlate with β-cell dysfunction.
The single-cell multi-omics approach will open new horizons for understanding cellular heterogeneity, realizing cellular behavior that promotes health, and identifying treatment targets.