Revealing cellular behavior with single-cell multi-omics
Chemical reactions govern cellular behavior, and are revealed by analysis of small molecules involved in intracellular metabolism. Individual cells in biological systems continuously adapt to improve survival and biological functi...
ver más
Descripción del proyecto
Chemical reactions govern cellular behavior, and are revealed by analysis of small molecules involved in intracellular metabolism. Individual cells in biological systems continuously adapt to improve survival and biological function, making them chemically and behaviorally heterogeneous. Unraveling this heterogeneity is essential to realize the correlation to disease state and health, but it is masked in bulk analyses of millions of cells.
I propose to develop a groundbreaking analytical approach for multi-omics of living individual cells to reveal variability in cellular behavior. This will be achieved by coupling a microfluidic device that enables controlled chemical exposure of a cell, to an efficient ionization probe for on-line time-resolved mass spectrometric measurements. By measuring the dynamics of each cell’s metabolome, lipidome, and secretome, novel insights into heterogeneity in intracellular activities will be gained. In addition, the level of heterogeneity will be uncovered through correlation with the cell’s transcriptome.
A special emphasis will be given to characterize individual β-cells that are key regulators of blood glucose by insulin secretion and whose dysfunction leads to type 2 diabetes. The behavior of individual β-cells is heterogeneous and ranges from complete failure to secrete insulin to compensating with increased secretion. I will use the single-cell multi-omics approach to test the hypothesis that intracellular metabolism is the key to β-cell dysfunction, and analyze healthy and diabetic β-cells upon chemical exposure to establish i) their metabolic heterogeneity and differences, ii) variations and temporal dynamics in their metabolic behavior and iii) metabolic roadblocks that correlate with β-cell dysfunction.
The single-cell multi-omics approach will open new horizons for understanding cellular heterogeneity, realizing cellular behavior that promotes health, and identifying treatment targets.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.