Retrospective genomic analyses of shortfin Mako shark Isurus oxyrinchus using...
Retrospective genomic analyses of shortfin Mako shark Isurus oxyrinchus using DNA from archived jaws
Understanding species responses to environmental changes is vital for conservation of biodiversity. In this respect, DNA from archived specimens represents an exclusive source of temporal genetic data. Although sharks are keystone...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-118550RB-C22
RETOS GENOMICOS MARINOS: DIVERSIDAD, CONECTIVIDAD Y ADAPTACI...
194K€
Cerrado
ABFT SNP
Isolation and characterization of single nucleotide polymorp...
158K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Understanding species responses to environmental changes is vital for conservation of biodiversity. In this respect, DNA from archived specimens represents an exclusive source of temporal genetic data. Although sharks are keystone apex predators in marine systems, there is a complete absence of temporal genetic studies for any species. DiMaS aims to investigate past and contemporary spatio-temporal patterns of effective population size (Ne), genetic diversity and population connectivity of shortfin mako (Isurus oxyrinchus – SMA), using a comparative approach across the globe. Most shark species have experienced significant population decreases documented throughout their range, with SMA currently listed as Vulnerable by the IUCN Red List of Threatened Species. In this project, I will use archived skeletal material (jaws, vertebrae and teeth) and an exome capture method for generating high throughput data. The data will be analysed through and eco-evolutionary framework to understand the effects of past climatic changes and anthropogenic pressures on the recent micro-evolutionary history of the species, and to predict the most likely responses to future climatic changes. In this context, DiMaS has the potential to become a seminal work in marine population genomics, as it will help describe and understand micro-evolutionary and demographic effects in marine apex species, shaped by natural and anthropogenic-induced environmental processes. In addition, by using a training-through-research approach, DiMaS will greatly contribute to strengthen my theoretical knowledge on evolutionary theory, and acquire new skills in population genomics and bioinformatics analyses. These skills, in combination with training to enhance management and supervisory/teaching competencies, will significantly contribute to my career development.