Resolving the molecular mechanisms of intracellular coral algal symbiosis
Many cells stably integrate microbes to gain ecological advantages for the organism. A remarkable example is the symbiosis between corals and algae, whose provision of photosynthetically fixed nutrients enables coral survival in n...
Many cells stably integrate microbes to gain ecological advantages for the organism. A remarkable example is the symbiosis between corals and algae, whose provision of photosynthetically fixed nutrients enables coral survival in nutrient-poor habitats. To establish symbiosis, coral cells acquire symbionts via phagocytosis, a process often used for pathogen clearance in other animals. Symbionts reside in phagosomes, and the prevailing view is that, similar to some pathogens, symbionts avoid destruction via phagolysosomal manipulation. Yet, unlike pathogens, symbionts provide nutrients to their host, and this may be key for intracellular persistence. Most research on nutrient translocation has focused on sugars, but surprisingly, sterols may be significant because cnidarians cannot synthesize cholesterol. However, little is known about the underlying molecular mechanisms of symbiosis establishment. Because corals are intractable cell biological models, I will leverage our unique resources and expertise to uncover fundamental aspects of symbiont acquisition and metabolic dependence using the emerging model anemone Aiptasia. To investigate symbiont acquisition (Objective 1), I will distinguish symbiont-phagocytosing cells, test candidate symbiont receptors by gain- and loss-of-function, record symbiont/cell interactions by live-imaging, and generate a symbiosis cell culture system. To understand the significance of symbiont-derived sterols (Objective 2), I will map cellular sterol utilization and identify the sterol transport machinery, test whether symbiont sterols can functionally substitute cholesterol, identify novel sterol-interacting proteins by pull-down assays, and explore symbiont persistence mechanisms using comparative phagosome proteomics. This proposal will for the first time provide a mechanistic understanding of coral-algal symbiosis establishment, a crucial process underpinning coral reefs, economically and ecologically important ecosystems.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.