Resolving Surface Reactions in Plasma Catalysis: Towards Rational Catalyst Desi...
Resolving Surface Reactions in Plasma Catalysis: Towards Rational Catalyst Design
Renewable energy is key to tackling climate change and reducing our dependence on fossil fuels. The intermittent supply of renewable energy hampers its efficient usage and creates a pressing need for innovative energy conversion a...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RTI2018-095460-B-I00
DISEÑO RACIONAL DE NUEVOS CATALIZADORES HETEROGENEOS, ELECTR...
230K€
Cerrado
TED2021-130191B-C41
CONVERSION DE ENERGIA EN PRODUCTOS QUIMICOS MEDIANTE LA PROD...
406K€
Cerrado
RTI2018-101033-B-I00
DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION...
133K€
Cerrado
TED2021-129506B-C22
CATALIZADORES CON ATOMOS DISPERSADOS PARA LA TERMO-FOTO VALO...
170K€
Cerrado
RTI2018-093996-B-C32
CARACTERIZACION EN CONDICIONES DE OPERACION DE CATALIZADORES...
91K€
Cerrado
POMASAC
Photoelectrochemical Oxidation of Methane using Single Atom...
181K€
Cerrado
Información proyecto SURPLAS
Duración del proyecto: 61 meses
Fecha Inicio: 2023-11-27
Fecha Fin: 2028-12-31
Descripción del proyecto
Renewable energy is key to tackling climate change and reducing our dependence on fossil fuels. The intermittent supply of renewable energy hampers its efficient usage and creates a pressing need for innovative energy conversion approaches. Energy-to-fuel conversion using plasma-assisted catalytic conversion (PLAC) is highly promising for producing urgently needed fuels from greenhouse gases. In PLAC, reactants are activated in a plasma discharge, allowing for remarkable efficiencies beyond the limits of thermal catalysis. The catalyst surface defines the reaction pathway and selectivity, and is thus key in catalyst design. However, at present the active state of catalyst surfaces in plasma is unknown, limiting the impact of PLAC by inhibiting the design of dedicated plasma catalysts.
In SURPLAS, I will overcome this challenge and unlock the full potential of PLAC by determining the surface reaction mechanisms of catalysts in plasma and demonstrating the rational design of plasma catalysts for CO2 hydrogenation. My expertise in surface reactions, materials design, and in situ spectroscopy forms the basis of a pioneering approach to analyzing surfaces while they are exposed to microwave plasma. My group’s unique embedding with plasma experts from industry and academia will facilitate the study of complex catalyst-plasma interactions. I will be the first to determine the active state of single-crystal surfaces and applied powder catalysts in plasma and to derive trends in selectivity and metal-support interactions in PLAC. This breakthrough in understanding will allow for the rational design of plasma catalysts, which I will validate by catalytic performance measurements.
This project will revolutionize PLAC by demonstrating catalyst design based on atomic-scale understanding of surface reactions in plasma. SURPLAS will allow me to lead the way into a new era of energy conversion, at a time when urgent need for fuels meets record growth in renewable energy.