RESISTANCE UNDER COMBINATORIAL TREATMENT IN ER AND ER BREAST CANCER.
Breast Cancer (BC) is the first cause of cancer-related death in women worldwide. Breast cancer is classified into well-recognized molecular subtypes. Despite solid pre-clinical evidence, only some patients benefit from administer...
Breast Cancer (BC) is the first cause of cancer-related death in women worldwide. Breast cancer is classified into well-recognized molecular subtypes. Despite solid pre-clinical evidence, only some patients benefit from administering drug combinations, an indication that patient and tumor heterogeneity is still present in the current stratification. Out of the numerous possible combinations of approved drugs, only a few have been actually tried, and the choice of tested combinations has been to some degree arbitrary. This proposal seeks to develop new approaches and identify mechanisms of treatment resistance at systems level, exploring how the effectiveness of specific targeted therapies applied in different clinical trials is affected by patient- and tumor-specific conditions. For this purpose, the project will gather and integrate longitudinal multidimensional data from ongoing clinical trials and newly generated --omics using systems approaches, which combine sub-cellular/cellular and/or organ level in-silico models and network analysis to build computational frameworks able to discover molecular signatures of resistance and predict patient response to combinatorial therapies. We aim to identify the physiological characteristics of non-responders vs. responders from existing and newly generated multi-omic data and biological samples from in-vivo and ex-vivo clinical studies of specific subtypes of BC patients treated with combination therapy. This new knowledge will be used to investigate the curative potential of new personalized drugs combinations. The overreaching goal is to develop computer xenograft model as a cost-efficient and better alternative in terms of ethics, availability to everyone, and animal use. The framework will include optimization algorithms to identify combinations of approved drugs with a high probability to work on individual or thin strata of patients. The project is endowed with a legal framework addressing ethical aspectsver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.