Remote whole-brain functional microscopy of the vascular system: a paradigm shif...
Remote whole-brain functional microscopy of the vascular system: a paradigm shift for the monitoring and treatment of small vessel diseases
Obtaining functional information on living organs non-invasively across different size scales is a tremendous challenge in medical imaging research, as diseases start locally at the cellular level deep into organs before expressin...
Obtaining functional information on living organs non-invasively across different size scales is a tremendous challenge in medical imaging research, as diseases start locally at the cellular level deep into organs before expressing large-scale and observable symptoms. The unique complexity of the human brain adds another level of difficulty for neuroimaging. The cerebrovascular system consists of a multiscale network of blood vessels. Interaction between neurons and this vascular system, the so-called neurovascular coupling, is a major foundation of brain function leading to constant adaptation of the local cerebral blood flow to local metabolic demand. Its alteration is intimately linked to cerebral dysfunction. Current brain imaging modalities are essential for evaluating cerebrovascular diseases in patients but are restricted to millimetric resolution and fail to capture most of blood flow dynamics. Here, we propose to revolutionize the field of neuroimaging by introducing a groundbreaking technology called functional Ultrasound Localization Microscopy (fULM) capable of monitoring transcranially the whole human brain vasculature and function down to microscopic resolution. Beyond opening a complete paradigm shift in brain angiography (at least two orders of magnitude increase in spatial resolution), fULM will also be able to map the functional brain response during task-evoked and spontaneous activity at microscopic levels. We will address major technical challenges of ultrasound imaging, develop advanced neurocomputational analysis methods, validate our methods in preclinical models of cerebrovascular diseases and perform a First-In-Human study. Fundamental understanding of brain hemodynamics and neurovascular coupling as well as early clinical diagnosis of neurovascular abnormalities and evaluation of drug efficacy would tremendously benefit from such capabilities revealing both the brain vasculature and neurofunctional activity down to microscopic resolutions.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.