Regulation of synaptic development and plasticity by molecular pathways linked t...
Regulation of synaptic development and plasticity by molecular pathways linked to human evolution
The synapse is a nanoscale machine, which transfers, integrates and stores information in brain circuits. Its function relies on multimolecular networks of interactions whose composition and dynamics shape synaptic transmission. A...
The synapse is a nanoscale machine, which transfers, integrates and stores information in brain circuits. Its function relies on multimolecular networks of interactions whose composition and dynamics shape synaptic transmission. A large body of evidence indicates that synapses specialized in humans. Human synapses are more densely distributed along dendrites and their period of maturation is protracted compared to rodent or non-human primate synapses. The rules governing their plasticity also differ from the other mammalian species studied so far. These traits contribute to the formation and function of complex circuits supporting human cognitive abilities. Yet, the underlying molecular mechanisms are not known. Here we will investigate the role of molecular pathways linked to human evolution in the regulation of synaptic development and plasticity. The proposed research takes advantage of my previous work on Slit-Robo Rho GTPAse-activating protein 2 (SRGAP2), one of the few genes specifically duplicated in humans, and the only one implicated at synapses so far. We will use the duplications of SRGAP2 as a thread to uncover i) fundamental mechanisms of synaptic development and plasticity, and ii) regulations specific to human synapses. To achieve our goals, we will employ a multi-disciplinary approach based on in vivo manipulations in intact mouse cortical circuits, mass spectrometry, live-cell single-molecule super-resolution microscopy, electrophysiology, and engineering of cortical neurons derived from human pluripotent stem cells. The combination of mouse and human models will allow us to establish a robust framework to bridge the gap in knowledge between cellular neurobiology and human brain evolution, and better understand synaptic dysfunctions in neurodevelopmental disorders.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.