Regeneration of Cardiac Tissue Assisted by Bioactive Implants
Heart failure is the end-stage of many cardiovascular diseases, but the leading cause is the presence of a large scar due acute to myocardial infarction. Current therapeutic treatments under development consist in cellular cardiom...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RTI2018-096320-B-C22
DESARROLLO DE NUEVOS BIOMATERIALES Y SISTEMAS ASOCIADOS PARA...
218K€
Cerrado
RTI2018-096320-B-C21
BIOINGENIERIA DE CONSTRUCTOS BASADOS EN BIOMATERIALES PARA L...
182K€
Cerrado
SAF2013-42528-R
NUEVAS ESTRATEGIAS EN REGENERACION CARDIACA COMBINANDO CELUL...
242K€
Cerrado
SAF2011-30067-C02-01
DESARROLLO DE BIOIMPLANTES PARA LA REGENERACION CARDIACA CON...
254K€
Cerrado
MAT2015-62725-ERC
BIOMATERIALES INSTRUCTIVOS PARA REGENERACION CARDIACA IN VIV...
62K€
Cerrado
PID2019-110137RB-I00
BIOIMPLANTES CARDIACOS DE NUEVA GENERACION BASADOS EN VESICU...
303K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Heart failure is the end-stage of many cardiovascular diseases, but the leading cause is the presence of a large scar due acute to myocardial infarction. Current therapeutic treatments under development consist in cellular cardiomyoplasty where myocardial cells or stem cells are implanted alone or encapsulated in natural scaffolds (collagens) and grafted onto infarcted ventricles with the hope that cells will contribute to the generation of new myocardial tissue. This approach seems to have a beneficial effect although it is not completely understood and optimized, yet. Thus, the urgent need of better therapeutic platforms is imminent. In view of this, we created a small interdisciplinary consortium (RECATABI) with experts in areas such as material sciences, tissue engineering, stem cell technologies and clinical cardiovascular research. RECATABI will integrate and synergise their capacities in order to obtain a novel clinical platform to regenerate necrotic ischemic tissues after cardiac infarct with a simple one-time patch technology application. The consortium will accomplish this by fabricating nanoscale engineered biomaterials and scaffolds that will match the exact biomechanical and biophysical requirements of the implanted tissue. In addition, the construct may induce rapid vascularization to ensure tissue remodelling and regeneration into a newly functional myocardium. The regenerative capacity of the implants loaded with pre-adapted cells (biomechanically and biophysically trained) will be assessed in small (rodents) and large (sheep) animal models.