Redirecting glial progenitor fate to rebuild the injured Brain
Over a million different cell types and billions of connections underlie brain function. While the embryonic brain glial progenitors generate this cellular diversity, in the adult brain progenitor competence becomes restricted to...
Over a million different cell types and billions of connections underlie brain function. While the embryonic brain glial progenitors generate this cellular diversity, in the adult brain progenitor competence becomes restricted to generation of few cell types. Thus, any attempt to repair the brain requires knowledge of the rules governing fate decisions within a damaged environment. We have shown that injury activates an inflammatory transcriptional signature in glial progenitors leading to exit from a dormant state. Excitingly, our recent data indicates that injury leads to demethylation of developmental enhancers in these glial progenitors too. In the regenerating zebrafish, activation of enhancers drives a transcriptional regenerative program. Yet, in rodents, despite enhancer demethylation by injury, transcription of a developmental program is missing. The overall goal of this project is to envisage ways to efficiently commission enhancers to re-direct lineage choices of glial progenitors towards re-establishing brain function following injury. Recent technological breakthroughs, including clonal lineage tracing, genome editing, and single cell omics combined with mouse genetics and injury models will allow (i) analysis of fate choices in the naïve and injured CNS (ii) study of how the chromatin landscape impacts transcriptional modulation of cell identity (iii) to finally design an integrated manipulation of the epigenome, transcriptome and environment for directed brain repair by endogenous progenitors.
We follow a multidisciplinary approach combining cutting edge technology in functional genomics, developmental biology and translational research and leverage on a set of cutting-edge experimental platforms established in my lab and validated protocols that have led to exciting preliminary discoveries.
We will provide fundamental knowledge on the mechanisms underlying lineage-decisions of CNS progenitors and open new research lines for treating CNS disorderver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.