Rectifiability and Density in Carnot and Homogeneous Groups, and Applications to...
Rectifiability and Density in Carnot and Homogeneous Groups, and Applications to Partial Differential Equations
The core of this project is Geometric Measure Theory (GMT) in Homogeneous Groups. The PI suggests exploring exciting original research avenues regarding the interplay between the concepts of flatness, density, and regularity of me...
ver más
Descripción del proyecto
The core of this project is Geometric Measure Theory (GMT) in Homogeneous Groups. The PI suggests exploring exciting original research avenues regarding the interplay between the concepts of flatness, density, and regularity of measures, and their applications to the theory of Partial Differential Equations (PDEs) and Free Boundary Problems (FBPs) in non-Euclidean spaces. The project’s potential for groundbreaking discovery is achieved by focusing on the investigation of i) the extension of the very classical density problem, whose solution in Euclidean spaces is codified in the celebrated Preiss' rectifiability theorem, to parabolic and Kolmogorov spaces; ii) the quantitative Reifenberg Theorem for measures in the parabolic space and quantitative dimensional estimates of the mutual singular set for the caloric measure in a two-phase problem; iii) the interplay between differentiability of Lipschitz functions and fine geometric properties of Radon measures in general Homogeneous Groups. As a byproduct of the study of iii), it will be obtained a converse to Pansu's Differentiability Theorem.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.