Reconstruction of specialized metabolite evolution through molecular switches
Novel traits can provide fitness advantages and drive evolution. New specialised metabolites are traits that arose in different plant lineages, and even replaced existing metabolites. Why, and how almost universal metabolic pathwa...
ver más
31/12/2029
UNIVERSITAT ZU KOL...
1M€
Presupuesto del proyecto: 1M€
Líder del proyecto
UNIVERSITAT ZU KOLN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2024-10-07
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto ROSE
Duración del proyecto: 62 meses
Fecha Inicio: 2024-10-07
Fecha Fin: 2029-12-31
Líder del proyecto
UNIVERSITAT ZU KOLN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Novel traits can provide fitness advantages and drive evolution. New specialised metabolites are traits that arose in different plant lineages, and even replaced existing metabolites. Why, and how almost universal metabolic pathways can be replaced in entire groups of species by biochemically distinct pathways without persistence of any species producing both metabolites remains unknown. Components of gene regulatory networks that control such pathways might act as regulatory switches that flip between pathways.
The replacement of the widely conserved red pigment anthocyanin by the biochemically distinct betalains offers a unique opportunity to understand the integration of novel traits into existing regulatory systems. Notably, no plant species producing both anthocyanins and betalains has yet been identified, but both show similar environmental responses. The unification of systems biology with population and molecular genomics allows to elucidate the role of gene regulatory networks and regulatory switches in metabolite evolution.
Given the great importance of understanding evolutionary innovation and the potential use for metabolic engineering, our work promises to be groundbreaking and have profound impact on many different fields of evolutionary and genetic research.
Specifically, our work plan includes the following aims:
I. Identify regulatory networks and switches that enabled the exchange of metabolic pathways
II. Analyze the fitness consequences of reciprocal pathway exchange and regulatory switching
III. Reveal the short-term selection consequences of metabolites during the domestication of food crops
Understanding how metabolic pathways can be exchanged in plants will provide insights into the important embedding of evolutionary innovation into existing systems with potential practical applications for crop improvement and bio-engineering.