Reconstruction and Computational Modelling for Inherited Metabolic Diseases
Our overall objectives are to accelerate the diagnosis, and enable personalised management, of inherited metabolic diseases (IMDs). Established academic technology for statistical genomic analysis, deep learning-based prediction o...
Our overall objectives are to accelerate the diagnosis, and enable personalised management, of inherited metabolic diseases (IMDs). Established academic technology for statistical genomic analysis, deep learning-based prediction of protein structure, and whole-body metabolic network modelling shall be applied to generate personalised computational models, given patient-derived genomic, transcriptomic, proteomic and metabolomic data. To train diagnostic models, a comprehensive clinical team will recruit 1,945 diagnosed patients with a wide variety of IMDs, then validate the clinical utility of personalised computational models on a set of 685 undiagnosed patients. An enhanced human metabolic network reconstruction, especially for lipid metabolism, reaction kinetics and inherited metabolic disease pathways, will increase the predictive capacity of cellular and whole-body metabolic network models. As an exemplar for other IMDs, personalised computational modelling will be used to identify compensatory and aggravating mechanisms that associate with clinical severity in Gaucher disease. The predictive capacity of personalised models will be validated by comparison with additional empirical investigations of protein structure and function as well as metabolomics, tracer-based metabolomics and proteomics of patient-derived in vitro disease models. To maximise the potential for impact, personalised modelling software will be developed to be generally applicable to a broad variety of IMDs, and implemented in a way that is both accessible to clinicians and admissible to regulatory authorities. Sustainability will be promoted by development of a roadmap for a European foundation to aid personalised diagnosis and management of IMDs, informed by broad stakeholder consultation. This is a unique opportunity to realise the potential of personalised computational modelling for a broad set of rare diseases, which is a field where European collaboration is an essential for progress.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.