Reconciling Classical and Modern (Deep) Machine Learning for Real-World Applicat...
Despite the undeniable success of machine learning in addressing a wide variety of technological and scientific challenges, the current trend of training predictive models with an evergrowing number of parameters from an evergrowi...
Despite the undeniable success of machine learning in addressing a wide variety of technological and scientific challenges, the current trend of training predictive models with an evergrowing number of parameters from an evergrowing amount of data is not sustainable. These huge models, often engineered by large corporations benefiting from huge computational resources, typically require learning a billion or more of parameters. They have proven to be very effective in solving prediction tasks in computer vision, natural language processing, and computational biology, for example, but they mostly remain black boxes that are hard to interpret, computationally demanding, and not robust to small data perturbations.
With a strong emphasis on visual modeling, the grand challenge of APHELEIA is to develop a new generation of machine learning models that are more robust, interpretable, and efficient, and do not require massive amounts of data to produce accurate predictions. To achieve this objective, we will foster new interactions between classical signal processing, statistics, optimization, and modern deep learning. Our goal is to reduce the need for massive data by enabling scientists and engineers to design trainable machine learning models that directly encode a priori knowledge of the task semantics and data formation process, while automatically prefering simple and stable solutions over complex ones. These models will be built on solid theoretical foundations with convergence and robustness guarantees, which are important to make real-life trustworthy predictions in the wild. We will implement these ideas in an open-source software toolbox readily applicable to visual recognition and inverse imaging problems, which will also handle other modalities. This will stimulate interdisciplinary collaborations, with the potential to be a game changer in the way scientists and engineers design machine learning problems.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.