Realizing the Potential of the Transients Boom A Consolidated Study of Stellar...
Realizing the Potential of the Transients Boom A Consolidated Study of Stellar Demise
How do massive stars evolve and achieve explosion? What governs the various regimes of accretion physics? What is the population of quiescent supermassive black holes? What is the neutron star equation of state? These seemingly un...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
KRANK
KilonovaRank gravitational wave counterparts and exotic tra...
1M€
Cerrado
EXP-SN
Mapping the cosmic expansion history with Type Ia supernovae
213K€
Cerrado
MSTAR
Massive Star Formation through the Universe
3M€
Cerrado
HOMERICS
The History of Merging Compact Object Binaries
244K€
Cerrado
SPCND
Supernovae Physics and Cosmology in the Next Decade
2M€
Cerrado
Información proyecto StarDestroyers
Duración del proyecto: 69 meses
Fecha Inicio: 2019-09-18
Fecha Fin: 2025-06-30
Líder del proyecto
TEL AVIV UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
How do massive stars evolve and achieve explosion? What governs the various regimes of accretion physics? What is the population of quiescent supermassive black holes? What is the neutron star equation of state? These seemingly unrelated questions (among others) can be answered through the study of transients, mainly: supernovae (SNe), tidal disruption events (TDEs), and kilonovae (KNe). For this reason, an enormous amount of observational effort is being put into surveys to discover more of these rare events. The bottleneck is now in identifying the transients of value in ever-growing alert streams, and in performing prioritized wide-scale followup. Without these crucial steps, which cannot be done retroactively after the transient surveys are concluded, we will not gain full access to the broad underlying physics, regardless of the quantity of events discovered.
Here I propose to develop and use novel tools to consolidate discoveries from various transient surveys, identify the events that demand immediate followup, prioritize followup resources, and conduct the followup, all in real time.
My experience with prominent transient surveys and followup facilities allowed me to obtain some of the most comprehensive observations of young SNe, identify the first class of optical TDEs and their unique host-galaxy preference, and lead the discovery team that secured the densest early data of the first KN following a gravitational-wave trigger. I now have access to a unique combination of observing resources that will allow me to transform these discoveries from the few events level to statistical samples.
The public ZTF survey is already producing 100,000 alerts per night. LSST is around the corner, and is expected to produce 10 million alerts per night. Now is the time to invest in identification, classification, and followup of the potential treasure chest of events provided by transient surveys in order to unlock the broad range of physical insights we gain from them.