Realizing designer quantum matter in van der Waals heterostructures
Conventional materials hosting exotic quantum phases typically have complex atomic structures, inhomogeneities from defects, impurities, and dopants making it difficult to rationally engineer their electronic properties. This can...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TITAN
Tailoring Quantum Matter on the Flatland
2M€
Cerrado
PID2020-113565GB-C22
SUPERSOLIDITY AND OTHER QUANTUM NOVEL PHASES IN NON-CONVENTI...
10K€
Cerrado
CCQCN
Crete Center for Quantum Complexity and Nanotechnology
5M€
Cerrado
PID2020-117347GB-I00
TRANSPORTE CUANTICO Y TERMODINAMICA: NUEVAS AVENIDAS EN MATE...
73K€
Cerrado
PID2019-106684GB-I00
CONVERSION DE ENERGIA EN HETEROESTRUCTURAS DE VAN DER WAALS
156K€
Cerrado
FIS2008-04209
TRANSPORTE CUANTICO EN NANO-ESTRUCTURAS HIBRIDAS: EFECTOS AS...
120K€
Cerrado
Información proyecto GETREAL
Duración del proyecto: 59 meses
Fecha Inicio: 2025-01-01
Fecha Fin: 2029-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Conventional materials hosting exotic quantum phases typically have complex atomic structures, inhomogeneities from defects, impurities, and dopants making it difficult to rationally engineer their electronic properties. This can be overcome using van der Waals (vdW) heterostructures that allow an almost arbitrary selection of the heterostructure building blocks, including metals and insulators, charge-density wave systems, superconductors, magnets, correlated insulators, and ferroelectrics. In a vdW heterostructure, the layers interact only through vdW forces and can keep their intrinsic properties. However, proximity effects cause properties to “leak” between the adjacent layers and allow creating exotic quantum mechanical phases that arise from the interactions between the layers. These key features have recently made it possible to realize exotic quantum phases by design and engineer responses that do not occur in natural materials. I will now exploit these features and fabricate heterostructures using molecular-beam epitaxy (MBE) to target artificial heavy fermion heterostructures realizing unconventional superconductivity, artificial 2D multiferroic materials, and 2D quantum spin liquids. The atomic scale geometry and electronic properties of the resulting heterostructures will be characterized using low-temperature scanning tunnelling microscopy (STM) and spectroscopy (STS).These designer heterostructures will have engineered electronic phenomena with atomically precise structures and controlled interactions. This will lead to exciting new opportunities in fundamental condensed matter physics and subsequently, in quantum devices realizing completely new functionalities. They answer the pressing need for novel quantum materials with tuneable properties to enable completely new types of approaches in quantum technologies. This will keep Europe at the forefront of the second quantum revolution and create yet unimagined future breakthrough technologies.