Real time inversion using self explainable deep learning driven by expert knowle...
IN-DEEP is a European Doctoral Network composed of nine doctoral candidates (DCs) and top scientists with complementary areas of expertise in applied mathematics, artificial intelligence, high-performance computing, and engineerin...
IN-DEEP is a European Doctoral Network composed of nine doctoral candidates (DCs) and top scientists with complementary areas of expertise in applied mathematics, artificial intelligence, high-performance computing, and engineering applications. Its main goal is to provide high-level training to the nine DCs in designing, implementing, and using explainable knowledge-driven Deep Learning (DL) algorithms for rapidly and accurately solving inverse problems governed by partial differential equations (PDEs).
Inverse problems in which the unknown parameters are connected to experimental measurements through PDEs cover from medical applications - like cancer growth assessment - to the safety of civil infrastructures, and green geophysical applications such as geothermal energy production. Their application value is measured in human lives and society's well-being, which goes beyond any quantifiable amount of money. This is why equipping a new generation of specialists with highly-demanded skills for the upcoming transition toward safe and robust AI-based technologies is imperative.
Despite the promising results in many applications, DL for PDEs has severe limitations. The most troublesome is its lack of a solid theoretical background and explainability, which prevents potential users from integrating them into high-risk applications.
IN-DEEP aims to remove these constraints to unleash the full potential of DL algorithms for PDEs. We will achieve this by: (a) focusing on emerging applications of DL for PDEs with immense societal and/or industrial value, (b) designing mathematics-infused advanced solvers to address them efficiently, and (c) involving, from the beginning, industrial and technological agents which can monitor, upscale, and exploit this knowledge. On the way, we shall establish the foundations of a better knowledge exchange ecosystem amongst the main academic and industrial actors within Europe, disseminating the results worldwide.ver más
06-11-2024:
IDAE Cadena de Valor...
Se ha cerrado la línea de ayuda pública: Ayudas a Proyectos para reforzar la Cadena de Valor de equipos necesarios para la transición a una economía de cero emisiones netas
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.