This proposal focuses on establishing new relations between natural objects in symplectic geometry with other fields of mathematics including knot and representation theory and the theory of integrable systems. All of these rela...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
GWT
Gromov Witten Theory Mirror Symmetry Modular Forms and In...
620K€
Cerrado
OPENGWTRIANGLE
Three ideas in open Gromov Witten theory
1M€
Cerrado
REALSYMPOPENMIRROR
Open Gromov Witten theory real symplectic geometry and mirr...
100K€
Cerrado
SYMPTOPODYNQUANT
Symplectic topology and its interactions from dynamics to q...
2M€
Cerrado
PID2021-124440NB-I00
GEOMETRIA ALGEBRAICA Y APLICACIONES A LA FISICA MATEMATICA
73K€
Cerrado
MTM2016-79400-P
SIMETRIAS EN GEOMETRIA ARITMETICA, ALGEBRAICA Y SIMPLECTICA
75K€
Cerrado
Información proyecto ROGW
Duración del proyecto: 82 meses
Fecha Inicio: 2019-12-17
Fecha Fin: 2026-10-31
Líder del proyecto
SORBONNE UNIVERSITE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This proposal focuses on establishing new relations between natural objects in symplectic geometry with other fields of mathematics including knot and representation theory and the theory of integrable systems. All of these relations are motivated by theoretical physics. The main objects of study are moduli spaces of pseudo-holomorphic maps giving rise to real and open Gromov-Witten invariants. The classical Gromov-Witten invariants were introduced by Gromov at the birth of symplectic topology giving rise to obstructions to symplectic embeddings. Their interpretation by Witten as the coefficients of a partition function of a field theory placed them in a new light : striking dualities understood in physics relate them to mathematical objects of completely different nature and on completely different manifolds. This has and continues to generate enormous amount of high-level research aimed at understanding these relations better.
The proposed research concerns establishing such relations in the context of the recently introduced, by the PI and A. Zinger, real Gromov-Witten theory. In particular, it aims to determine the systems of differential equations governing the real Gromov-Witten theory, that parallel the KdV and Toda hierarchies in the classical case. We will further study the real Gromov-Witten theory of toric Calabi-Yau threefolds with the aim of establishing a connection with SO/Sp Chern-Simons theory and a real version of the remodeled mirror symmetry. Finally, we will seek to establish foundational results of open Gromov-Witten theory in a general context.