Reaction Mechanism of Methanol Conversion in Zeolite by Integrated Diffusion/Rea...
Reaction Mechanism of Methanol Conversion in Zeolite by Integrated Diffusion/Reaction Kinetics Model
C1 Chemistry plays a crucial role in providing energy and chemical supplies while meeting environmental requirements, such as carbon neutrality to mitigate global warming and the gradual shift in the supply chain from crude oil to...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EQC2018-004752-P
Reactor catalítico automatizado y sistema analítico asociado
101K€
Cerrado
CTQ2008-06839-C03-03
DISEÑO RACIONAL DE CATALIZADORES HETEROGENEOS PARA PROCESOS...
182K€
Cerrado
COUPCAT
Coupling dimerisation and metathesis reactions to produce pr...
257K€
Cerrado
ZEOBIOCHEM
Advanced Zeolite Catalysis for Sustainable Biorefinery to Pr...
1M€
Cerrado
ZEOCO2
ZEOlites for the conversion of CO2 to fuels and chemicals
161K€
Cerrado
ECOCAT
Improving the economic feasibility of the biorefinery throug...
183K€
Cerrado
Información proyecto INTDKIN
Duración del proyecto: 33 meses
Fecha Inicio: 2023-03-21
Fecha Fin: 2025-12-31
Líder del proyecto
UNIVERSITEIT GENT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
192K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
C1 Chemistry plays a crucial role in providing energy and chemical supplies while meeting environmental requirements, such as carbon neutrality to mitigate global warming and the gradual shift in the supply chain from crude oil to biomass, and other alternative carbon sources. Zeolites, as one kind of important heterogeneous catalysts, create a perfect environment to selectively and effectively convert C1 molecules to chemicals with high economic value, as for instance the transformation of methanol to olefins (MTO) or the methanol carbonylation process. However, the understanding of the reaction mechanisms of these methanol conversions in zeolites is lacking. Up till now the diffusion process of reactants, intermediates, and products in the confined spaces of zeolites has not been considered in the free energy landscape of the catalytic cycle, which leads to a discrepancy between experiments and calculations. Therefore, the proposed integrated diffusion/reaction kinetics model is an essential keystone to understand the high selectivity of zeolites in C1 chemistry. In this project, ab initio molecular dynamic (AIMD) simulations accelerated with different enhanced sampling methods will be employed to study the complete kinetics of methanol conversion in zeolites, including the processes of reactants adsorption/diffusion, reaction, and product diffusion/desorption. This should result in a complete free energy landscape, by which the parameters of zeolites that influence the selectivity of C1 chemistry will be uncovered. The final affinity of this model is to guide the modification, design, and screening of highly effective zeolite catalysts for C1 chemistry in an efficient and adequate manner.