Re defining CD4 T Cell Identities One Cell at a Time
The immune system consists of a complex continuum of cell types that communicate with each other and non-immune tissues in homeostasis, and during infections, autoimmunity and cancer. Conventional transcriptional and functional pr...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
THPLAST
The molecular regulation of T helper cell subtype plasticity...
211K€
Cerrado
DevoSignGammaDelta
Tracking T cell development and TCR proximal signalling
161K€
Cerrado
Immune Regulation
How Infection History Shapes the Immune System Pathogen ind...
1M€
Cerrado
ENLIGHT-TEN
European Network linking informatics and genomics of helper...
3M€
Cerrado
OncoSeq
OncoSeq an innovative single cell system for immunomonitori...
150K€
Cerrado
Información proyecto ThDEFINE
Duración del proyecto: 80 meses
Fecha Inicio: 2015-10-19
Fecha Fin: 2022-06-30
Líder del proyecto
GENOME RESEARCH LIMITED
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The immune system consists of a complex continuum of cell types that communicate with each other and non-immune tissues in homeostasis, and during infections, autoimmunity and cancer. Conventional transcriptional and functional profiling enabled by cell surface marker sorting has revealed a great deal about how specific cell types operate en masse, yet important transcriptional heterogeneity that exists within cell populations remains unexplored. High-throughput single cell RNA-seq can overcome this limitation by profiling entire transcriptomes of thousands of individual cells, revealing cell-to-cell variation by decoding patterns within populations masked in bulk transcriptomes. We will exploit this to dissect the mouse CD4+ T cell compartment, a heterogeneous white blood cell population that initiates adaptive immune responses.
In AIM 1, we will chart the dynamics of in vivo CD4+ cell states in mouse before, during and after immune response challenges. By sequencing thousands of single cell transcriptomes, we will map the landscape of CD4+ T cell states in an unbiased, quantitative and comprehensive way.
In AIM 2, we will predict key transcription factors, cell surface markers, and signalling molecules, including cytokines/chemokines in each cell state through novel computational approaches. Furthermore, our analyses will establish regulatory modules and networks of gene-gene interactions active in immune responses.
In AIM 3, we will (a) confirm the in vivo impact of new cell states by performing adoptive cell transfer assays; and
(b) validate our predictions of regulatory molecules and interactions using a massively parallel CRISPR/Cas knockout screen in vitro.
This powerful integrated approach combines single cell RNA-sequencing, bioinformatics and genetic engineering to dissect CD4+ T cell states, a central compartment of mammalian adaptive immunity, and reveal basic principles of gene regulation.