Innovating Works

RESSPICAC

Financiado
Rational Engineering of Synthetic Systems for Propagation of Information via Cat...
Rational Engineering of Synthetic Systems for Propagation of Information via Catalytic Assembly of Copies Copying of information-bearing polymer templates is vital to life. The central dogma of molecular biology describes how a sequence of nucleotides in DNA is copied into a sequence of nucleotides in a newly-assembled RNA polymer, an... Copying of information-bearing polymer templates is vital to life. The central dogma of molecular biology describes how a sequence of nucleotides in DNA is copied into a sequence of nucleotides in a newly-assembled RNA polymer, and then into a sequence of amino acids in a protein. These processes involve sophisticated machinery in extant organisms, but even the ribosome is bound by the same physical principles as simpler systems that must have operated in early life. Despite the fundamental importance of copying, and its potential for the engineering of complex molecular systems, we do not understand these basic principles that enable accurate and reliable copies to be made of polymer templates, and cannot build minimal synthetic copying systems. I propose to explore minimal models of copying, leveraging recent advances in the thermodynamics of small, fluctuating systems and the thermodynamics of information processing, to identify these principles. I will translate this insight, via detailed molecular simulation and experimental characterisation of novel reaction motifs, into the construction of minimal synthetic copying systems. I will construct these systems from non-biological synthetic DNA. The project will provide insight into analogous processes in living organisms, and shed light on primitive living systems. It will also lay the groundwork for engineering synthetic systems with key cell-like functionalities, providing a mechanism for the production of complex assemblies that is fundamentally distinct from traditional self-assembly. Theory and simulation will drive the experiments, making rational design of systems possible whilst providing insight into the fundamental thermodynamics of information processing and computation, and the biophysics of novel nucleic acid interactions. Indeed, designing and building concrete molecular systems based on fundamental theory will enhance our understanding of the theories themselves. ver más
31/08/2025
1M€
Duración del proyecto: 70 meses Fecha Inicio: 2019-10-30
Fecha Fin: 2025-08-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2019-10-30
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2019-STG: ERC Starting Grant
Cerrada hace 6 años
Presupuesto El presupuesto total del proyecto asciende a 1M€
Líder del proyecto
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND ME... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5