The proposal studies deterministic problems in the spectral theory of the Laplacian and in analytic number theory by using random models. I propose two projects in spectral theory on this theme, both with a strong arithmetic ingre...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto RMAST
Duración del proyecto: 81 meses
Fecha Inicio: 2018-04-10
Fecha Fin: 2025-01-31
Líder del proyecto
TEL AVIV UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The proposal studies deterministic problems in the spectral theory of the Laplacian and in analytic number theory by using random models. I propose two projects in spectral theory on this theme, both with a strong arithmetic ingredient, the first about minimal gaps between the eigenvalues of the Laplacian, where I seek a fit with the corresponding quantities for the various conjectured universality classes (Poisson/GUE/GOE), and the second about curvature measures of nodal lines of eigenfunctions of the Laplacian, where I seek to determine the size of the curvature measures for the large eigenvalue limit. The third project originates in analytic number theory, on angular distribution of prime ideals in number fields, function field analogues and connections with Random Matrix Theory, where I raise new conjectures and problems on a very classical subject, and aim to resolve them at least in the function field setting.