Innovating Works

RMAST

Financiado
Random Models in Arithmetic and Spectral Theory
The proposal studies deterministic problems in the spectral theory of the Laplacian and in analytic number theory by using random models. I propose two projects in spectral theory on this theme, both with a strong arithmetic ingre... The proposal studies deterministic problems in the spectral theory of the Laplacian and in analytic number theory by using random models. I propose two projects in spectral theory on this theme, both with a strong arithmetic ingredient, the first about minimal gaps between the eigenvalues of the Laplacian, where I seek a fit with the corresponding quantities for the various conjectured universality classes (Poisson/GUE/GOE), and the second about curvature measures of nodal lines of eigenfunctions of the Laplacian, where I seek to determine the size of the curvature measures for the large eigenvalue limit. The third project originates in analytic number theory, on angular distribution of prime ideals in number fields, function field analogues and connections with Random Matrix Theory, where I raise new conjectures and problems on a very classical subject, and aim to resolve them at least in the function field setting. ver más
31/01/2025
TAU
2M€
Duración del proyecto: 81 meses Fecha Inicio: 2018-04-10
Fecha Fin: 2025-01-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2018-04-10
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2017-ADG: ERC Advanced Grant
Cerrada hace 7 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
TEL AVIV UNIVERSITY No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5