The main topic of this proposal is the study of the Statistical Mechanics of Integrable systems, a particular class of dynamical systems for which the behaviour is fully predictable from the initial data. All relevant information...
The main topic of this proposal is the study of the Statistical Mechanics of Integrable systems, a particular class of dynamical systems for which the behaviour is fully predictable from the initial data. All relevant information about the dynamics is encoded in a particular matrix L, called Lax matrix. We want to compute the maximum amplitude for the solution of the Ablowitz-Laddik lattice, and the correlation functions for the Volterra lattice, and the Exponential Toda one. The first quantity is instrumental to study the phenomenon of rouge waves formations, and the second one to compute transport coefficients of specific lattices. To compute these quantities, we need to obtain the distribution and the fluctuations of the eigenvalues of the Lax matrix when the initial data are sample according to a Generalized Gibbs Ensemble, thus the Lax matrix becomes a random matrix. To study these objects, we use Large Deviations principles. Furthermore, we also considered the focusing Ablowitz--Laddik lattice, the focusing Schur flow, and the family of Itoh--Narita--Bogoyavleskii lattices. The eigenvalues of the Lax matrices of these systems, when the initial data is sample according to a Generalized Gibbs Ensemble, lay on the complex plane. We plan to compute the density of states, and the joint eigenvalues distribution of the random Lax matrices by using the Inverse Scattering Transform, that is a canonical transformation between the physical variables and the spectral variables of the Lax matrices, the Hermitization technique and the Brown measure characterization. In the end, thanks to this analysis, we will be able to define some new random matrix ensembles on the complex plane, for which it is possible to compute the eigenvalues’ distribution, and the joint eigenvalues’ density explicitly. So, we will define some new beta-ensembles.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.