We propose an intradisciplinary research programme in pure mathematics, with graph theory at the epicenter and rich connections to other fields.
Although the bonds between graph theory and other branches of mathematics have been...
We propose an intradisciplinary research programme in pure mathematics, with graph theory at the epicenter and rich connections to other fields.
Although the bonds between graph theory and other branches of mathematics have been growing in recent years, large parts of graph theory are still almost isolated from the rest of mathematics, and conversely, there are fields based on graphs that still make hardly any use of graph-theoretic machinery: the study of Cayley graphs in combinatorial group theory, the recent notion of Benjamini– Schramm convergence, and the many instances of approximating continuous spaces by graphs in various contexts are such examples.
The RGGC project offers concrete graph theoretic approaches to important challenges in the afore- mentioned fields. At the same time, advances in graph theory using group theoretic and analytic machinery will be achieved. The project comprises 4 research Themes overarching a wide mathematical scenery.
Theme 1 unites the worlds of Benjamini–Schramm convergence and graph minor theory using tech- niques from enumerative and analytic combinatorics that were applied for the first time in this context by the PI.
Theme 2 builds on the deepest part of the PI’s past work to offer a new perspective to geometric random graphs profiting from a sophisticated theory triggered by Kesten’s random walks on groups.
Theme 3 aims at deepening the understanding of cover time of graphs by exploring its extremal and typical behaviour using the concept of cover cost, an approach pioneered by the PI.
Theme 4 introduces diffusions on continuous, graph-like spaces in the sense of Thomassen & Vella motivated by both theoretic and applied considerations.
The proposed research not only attacks challenging questions in each of thease areas, it also creates bridges for transferring knowledge and tools among them, through concrete novel approaches of the PI that have already achieved initial success.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.