The mTOR complex 1 (mTORC1) is a master regulator of cell growth and metabolism in response to environmental cues, such as nutrients. Its dysregulation is a common feature of several life-threatening disorders, including cancer an...
The mTOR complex 1 (mTORC1) is a master regulator of cell growth and metabolism in response to environmental cues, such as nutrients. Its dysregulation is a common feature of several life-threatening disorders, including cancer and metabolic disease. Therefore, understanding how mTORC1 is regulated is of great importance for both basic and translational research.
The availability of Amino Acids (AA) is a prerequisite for cell growth, hence a robust mTORC1 regulator. Previous studies on how AA regulate mTORC1 have mainly focused on the lysosomal Rag GTPases and built a complex protein network that coordinatively senses AA to modify Rag activity. According to the current model, AA sufficiency leads to Rag activation, which in turn recruit mTORC1 to the lysosomal surface, where its direct activator Rheb also resides.
Although this machinery is indeed important for acute mTORC1 re-activation upon AA re-addition, my preliminary work suggests that additional, Rag-independent mechanisms also exist and have a predominant role to activate mTORC1 in unchallenged cells or following longer re-activation times. In line with this, Rag knockout cells show persistent steady-state mTORC1 activity and grow similarly to their WT counterparts.
In stark contrast to previous approaches, this project aims to elucidate the Rag-independent modes of mTORC1 regulation by AA. To achieve this goal, I will 1) use WT and Rag-mutant cells to study the mechanistic differences of basal mTORC1 activation vs. acute re-activation, and 2) identify novel mTORC1 regulators/interactors in Rag-mutant cells, using biochemical assays, proteomic approaches and functional RNAi screens, to build part of the Rag-independent mTOR regulatory network.
Overall, this work will identify new mechanisms and principles of mTORC1 activation and thus expand our view on how AA control mTORC1 activity. In addition, it will provide novel mTORC1 regulators, as putative targets for drug development against mTOR-related diseases.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.