Rack Mountable Soliton Microcomb with Turn Key operation for Scientific and Indu...
Rack Mountable Soliton Microcomb with Turn Key operation for Scientific and Industrial Applications
"The invention of the optical frequency comb (OFC) has enabled counting of optical frequencies and has thereby given rise to optical atomic clocks that today are even sensitive to the gravitational redshift and are of crucial impo...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto RaMSoM
Duración del proyecto: 25 meses
Fecha Inicio: 2021-03-11
Fecha Fin: 2023-04-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"The invention of the optical frequency comb (OFC) has enabled counting of optical frequencies and has thereby given rise to optical atomic clocks that today are even sensitive to the gravitational redshift and are of crucial importance for future improvements to navigation, positioning, and timing. The early generation of OFC based on mode-locked lasers are already commercially available but suffer from a number of limitations in terms of system size and complexity, and notably, low attainable repetition rates (<10 GHz). However, higher repetition rates (>10 GHz) are essential in many applications. The discovery of microresonator-based Kerr frequency combs (microcombs) has revolutionized the field and paved a route to a compact OFC, with broad optical bandwidth and repetition rates in the microwave to terahertz domain (10 GHz - 1 THz). Despite such undeniable advantages of soliton microcombs over other types of OFCs as chip-scale footprint and unique combination of high repetition rates and broad bandwidth reaching an octave, there is however no commercial product that would expose the soliton microcomb technology to the market and offer an optical frequency comb with similar performance and scale.
The focus of the RaMSoM project is to design and build the world's first 19""-rack-mounted stand-alone soliton microcomb source with the turn-key operation and demonstrate its performance and reliability in scientific and industrial applications. The project will pursue the following objectives: (1) development of a turn-key reliable soliton microcomb source in a 19""-rack chassis; (2) employment of the developed stand-alone system for novel scientific applications, including multi-wavelength broadband spectroscopy and neuromorphic optical computing; (3) development of an industrial-grade soliton microcomb system with enhanced tuning functionality and demonstration of field applications in cooperation with industrial partners.
"