Combinatorics is an extremely fast growing mathematical discipline. While it started as a collection of isolated problems that
were tackled using ad-hoc arguments it has since grown into a mature discipline which both incorporated...
Combinatorics is an extremely fast growing mathematical discipline. While it started as a collection of isolated problems that
were tackled using ad-hoc arguments it has since grown into a mature discipline which both incorporated into it deep tools from other mathematical areas, and has also found applications in other mathematical areas such as Additive Number Theory, Theoretical Computer Science, Computational Biology and Information Theory.
The PI will work on a variety of problems in Extremal Combinatorics which is one of the most active subareas within Combinatorics with spectacular recent developments. A typical problem in this area asks to minimize (or maximize) a certain parameter attached to a discrete structure given several other constrains. One of the most powerful tools used in attacking problems in this area uses the so called Structure vs Randomness phenomenon. This roughly means that any {\em deterministic} object can be partitioned into smaller quasi-random objects, that is, objects that have properties we expect to find in truly random ones. The PI has already made significant contributions in this area and our goal in this proposal is to obtain further results of this caliber by tackling some of the hardest open problems at the forefront of current research. Some of these problems are related to the celebrated Hypergraph and Arithmetic Regularity Lemmas, to Super-saturation problems in Additive Combinatorics and Graph Theory, to problems in Ramsey Theory, as well as to applications of Extremal Combinatorics to problems in Theoretical Computer Science. Another major goal of this proposal is to develop new approaches and techniques for tackling problems in Extremal Combinatorics.
The support by means of a 5-year research grant will enable the PI to further establish himself as a leading researcher in Extremal Combinatorics and to build a vibrant research group in Extremal Combinatorics.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.