Quantum Synthetic Models for Entangled Matter Out of Equilibrium
The exceptional features of many-body quantum systems out of equilibrium are intimately connected with the intrinsic limitations we face when simulating their dynamics on a classical computer, as both are a consequence of the fact...
The exceptional features of many-body quantum systems out of equilibrium are intimately connected with the intrinsic limitations we face when simulating their dynamics on a classical computer, as both are a consequence of the fact that quantum matter is entangled. Digital quantum simulators, or quantum computers, promise to overcome these limitations. However, in the current era of Noisy-Intermediate-Scale-Quantum (NISQ) devices, large-scale fault-tolerant quantum computation is out of reach, making full-fledged quantum simulation an ambitious long-term goal. Still, NISQ devices already provide new horizons and opportunities for fundamental research in many-body physics. Indeed, in their native hardware, they can be conceptualized as qubit systems evolving by discrete gates, measurements, and feedback, giving rise to completely new collective behavior and universal phenomena. This project has the ambitious goal of finding and theoretically characterizing new phases of matter which are exclusive to NISQ platforms, charting their largely unexplored phenomenology and possibilities. Taking on a fundamental perspective, at the intersection of many-body physics and quantum information theory, we will pursue this goal based on the study of synthetic models of quantum circuits and quantum cellular automata (QCA). The target results of this project include: (i) Prediction of new dynamical phases arising thanks to the building blocks of NISQ technology and identification of protocols to observe them in existing platforms; (ii) Deeper understanding of topical but hard problems in many-body physics out of equilibrium, made possible by the simplifying minimal structure of quantum-circuit and QCA models. The proposed research is expected to stimulate new synergies between different communities, reflecting the dual nature and interdisciplinary interest of NISQ devices, being both early prototypes for quantum computers and experimental platforms for many-body physics.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.