Quantum Spin Simulators Based on Defects in Diamond
"Quantum interacting systems lie at the forefront of contemporary physics, posing challenges to our understanding of quantum phases, many-body dynamics, and a variety of condensed matter phenomena. Also, advances in quantum applic...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ETHOQS
Entanglement as a tool in holography and quantum simulators
189K€
Cerrado
BES-2016-079181
ENTRELAZAMIENTO CUANTICO EN SISTEMAS DE MUCHAS PARTICULAS
93K€
Cerrado
AGEnTh
Atomic Gauge and Entanglement Theories
1M€
Cerrado
FIS2008-01236
INFORRMACION CUANTICA EN SISTEMAS COMPLEJOS
373K€
Cerrado
FIS2012-33642
MATERIA CUANTICA TOPOLOGICA: EN LA FRONTERA ENTRE MATERIA CO...
98K€
Cerrado
FIS2015-69167-C2-1-P
ENTRELAZAMIENTO CUANTICO EN SISTEMAS DE MUCHAS PARTICULAS
47K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"Quantum interacting systems lie at the forefront of contemporary physics, posing challenges to our understanding of quantum phases, many-body dynamics, and a variety of condensed matter phenomena. Also, advances in quantum applications, including quantum computation and metrology, rely on interactions to create entanglement and to improve sensitivity beyond the standard quantum limit. In particular, the generation of large-scale, many-body entanglement in solid-state systems is a long-standing goal for many applications of quantum science.
These outstanding problems attract substantial theoretical attention, leading to the development of remarkable techniques, ranging from renormalization group approaches to exact solutions in certain cases. However, in most cases it is necessary to resort to approximations and perturbative analysis. Thus in recent years tremendous effort has been invested into developing precision experimental tools to simulate many-body Hamiltonians, with realizations so far in cold atomic systems and trapped ions.
Here we propose a complementary experimental approach using Nitrogen-Vacancy (NV) color centers in diamond as a quantum many-body spin simulator. The NV center is an atom-like spin defect in a robust solid, with remarkable optical properties and a long electronic spin coherence lifetime. NV-diamond has been applied successfully to magnetic field sensing and demonstrations of spin-based quantum information processing.
The goal of this project is to advance this new paradigm of atomic-like spin defects in the solid state as a simulator for quantum many-body spin systems, offering a platform for creating long-range interactions, quantum spin phases, and quantum computing resources. This approach holds the promise to advance the state-of-the-art by providing powerful new tools for measurement and control, and a unique quantum test-bed lying between clean ultracold atomic systems and dirty condensed matter systems."