Quantum Spectroscopy exploring new states of matter out of equilibrium
This project addresses the development of novel theoretical and computational tools that utilize the quantum nature of light to understand and control quantum phenomena in complex systems in and out of equilibrium. Some examples o...
This project addresses the development of novel theoretical and computational tools that utilize the quantum nature of light to understand and control quantum phenomena in complex systems in and out of equilibrium. Some examples of these processes include exciton-exciton interaction, quantum coherence, assisted energy and charge transport, photochemistry, and new states of matter.
The present project aims to build up the basic theoretical and computational machinery to allow quantum computations of the electronic and ionic dynamics of atomic, molecular or extended systems coupled to quantised electromagnetic fields and thereby set the stage for a new era in the first-principle computational modelling of light-matter interactions. To achieve this goal, we will combine the principles of time-dependent density functional theory (TDDFT) and quantum electrodynamics (QED) into a new quantum electrodynamical-DFT approach named as QEDFT.
Insight, design and control define the scientific rationale of the project, which will focus on the discovery of the general principles that describe and control systems far from equilibrium and orchestrate the behavior of many electrons and atoms to create new phenomena/states of matter. Besides developing and implementing the new theory of QEDFT, we will investigate atoms and molecules with quantum optical fields; whether and how selected laser pulses drive molecules and solids into new states of matter that have no equilibrium counterpart. What happens when it enters these coherent states? The objective is to identify the spectroscopic fingerprint of those new states. Which states arise in the strong light-matter coupling regime? e.g. hybridized states such as photon bound states, exciton/plasmon-polariton states, so far still undiscovered states. The long-term goal is to deliver an all-out theoretical and computational toolbox for QED-TDDFT applicable to complex molecular systems (like presently approachable by DFT and by TDDFT).ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.