Descripción del proyecto
DyMETEr aims at creating novel quantum platforms of enhanced capability by using ultracold Erbium and Dysprosium atoms as building-block to unprecedentedly access many-body phases of dipolar mixtures, dipolar-gas microscopy, and multi-valence-electron Rydberg quantum simulators.
By pushing the limits of interaction control using tailored optical potentials and Rydberg excitations, as well as state read-out through the application of quantum-gas-microscopy techniques, we will harness the multi-valance-electron nature of magnetic lanthanides to deepen our understanding of unconventional phases and phenomena of quantum matter -- in particular, those arising from the combined effects of short- and long-range interactions.
The main project objectives are:
•The bulk phases of matter in dipolar quantum mixtures: Accessing the unexplored miscibility-immiscibility phase diagram of dipolar quantum mixtures in the droplet and supersolid regime.
•Microscopy and lattice physics with quantum dipoles: Developing quantum-gas microscopy for magnetic atoms to access quantum simulation with long-range-interacting atomic systems.
•Tweezer arrays with multi-valence-electron Rydberg atoms: Realizing novel Rydberg quantum simulators exploiting the multi-electron nature of magnetic lanthanide atoms.
Our project is very ambitious, but, if successful, has clearly the potential to break new ground in dipolar quantum physics with ultracold atoms.