Quantum Simulation with Long-Range-Interacting Dysprosium and Erbium: from Micro...
Quantum Simulation with Long-Range-Interacting Dysprosium and Erbium: from Microscopy to Rydberg Tweezers
DyMETEr aims at creating novel quantum platforms of enhanced capability by using ultracold Erbium and Dysprosium atoms as building-block to unprecedentedly access many-body phases of dipolar mixtures, dipolar-gas microscopy, and m...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TOPODY
Exploring topological matter with atomic Dysprosium
2M€
Cerrado
SimUcQuam
Simulating ultracold correlated quantum matter New microsco...
1M€
Cerrado
MANYBO
Many body physics in gauge fields with ultracold Ytterbium a...
1M€
Cerrado
YbQuantumSim
Quantum simulation of novel many body phenomena with Ytterbi...
159K€
Cerrado
BosQuanTran
Quantum simulation of transport properties in arbitrary shap...
185K€
Cerrado
Información proyecto DyMETEr
Duración del proyecto: 63 meses
Fecha Inicio: 2022-06-20
Fecha Fin: 2027-09-30
Líder del proyecto
UNIVERSITAET INNSBRUCK
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
DyMETEr aims at creating novel quantum platforms of enhanced capability by using ultracold Erbium and Dysprosium atoms as building-block to unprecedentedly access many-body phases of dipolar mixtures, dipolar-gas microscopy, and multi-valence-electron Rydberg quantum simulators.
By pushing the limits of interaction control using tailored optical potentials and Rydberg excitations, as well as state read-out through the application of quantum-gas-microscopy techniques, we will harness the multi-valance-electron nature of magnetic lanthanides to deepen our understanding of unconventional phases and phenomena of quantum matter -- in particular, those arising from the combined effects of short- and long-range interactions.
The main project objectives are:
•The bulk phases of matter in dipolar quantum mixtures: Accessing the unexplored miscibility-immiscibility phase diagram of dipolar quantum mixtures in the droplet and supersolid regime.
•Microscopy and lattice physics with quantum dipoles: Developing quantum-gas microscopy for magnetic atoms to access quantum simulation with long-range-interacting atomic systems.
•Tweezer arrays with multi-valence-electron Rydberg atoms: Realizing novel Rydberg quantum simulators exploiting the multi-electron nature of magnetic lanthanide atoms.
Our project is very ambitious, but, if successful, has clearly the potential to break new ground in dipolar quantum physics with ultracold atoms.