"Van der Waals (vdW) materials are layered compounds that can be readily exfoliated down to the monolayer limit. Magnetic order has recently been observed in such atomic monolayers. This milestone discovery could launch a new era...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BES-2015-074520
MOLECULAS MAGNETICAS DE INTERES EN COMPUTACION Y ESPINTRONIC...
93K€
Cerrado
EXAFONIS
Exploring antiferromagnetic order at the nanoscale with a si...
2M€
Cerrado
BES-2012-057351
DEL MAGNETISMO MOLECULAR A LA ESPINTRONICA MOLECULAR
43K€
Cerrado
PID2021-127250NB-I00
GEOMETRIA DE ESTADOS CUANTICOS EN PLATAFORMAS ELECTRONICAS
97K€
Cerrado
OPTIMISTIC
Molecular Spin Interactions in Magnetic Fields of Supercondu...
216K€
Cerrado
QFAST
Quantum Fast Spin dynamics addressed by High Tc superconduct...
2M€
Cerrado
Información proyecto QS2DM
Duración del proyecto: 85 meses
Fecha Inicio: 2019-12-19
Fecha Fin: 2027-01-31
Líder del proyecto
UNIVERSITAT BASEL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"Van der Waals (vdW) materials are layered compounds that can be readily exfoliated down to the monolayer limit. Magnetic order has recently been observed in such atomic monolayers. This milestone discovery could launch a new era in nano-magnetism, in, which the exceptional cleanliness and tunability of these truly two-dimensional magnets may enable fundamental discoveries and novel technologies based on atomic-scale functional magnetic elements.
Direct, quantitative sensing of nanoscale properties of these systems is a key ingredient for further progress. My group has recently demonstrated their power through the first nanoscale imaging of magnetism in atomic-scale vdW magnets. This major advance was enabled by quantitative, nanoscale magnetometry with a single spin - a unique quantum technology, which I have pioneered.
I propose to leverage this progress to bring groundbreaking advances to the field of vdW magnetism. Non-collinear, engineered spin textures, such as Skyrmions of helimagnetism, offer a current frontier that I will address, with possibly far-reaching impact for the field of spintronics. I will further harness the high-frequency sensing capabilities of our quantum sensors to address microwave-domain spin-waves in vdW magnets. This completely uncharted domain offers insight into still poorly understood spin interactions and has technological potential through the field of ""vdW magnonics"", which I plan to establish.
This challenging project combines advanced materials engineering with an emerging, and highly promising quantum sensing technology. It is thereby highly interdisciplinary and goes well beyond the state-of-the-art in the fields of vdW magnetism and quantum-sensing. I will thereby further strengthen Europe's position at the forefront of these flourishing research areas. My project requires a commitment of several years, a team of two graduate students and two postdoctoral fellows, and significant investment in instrumentation."