By harnessing the unique properties of quantum mechanics (superposition and entanglement) to encode, transmit and process information, quantum information science offers significant opportunities to revolutionise information and c...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ATOMPHOTONLOQIP
Experimental Linear Optics Quantum Information Processing wi...
1M€
Cerrado
Duración del proyecto: 61 meses
Fecha Inicio: 2015-03-23
Fecha Fin: 2020-04-30
Líder del proyecto
UNIVERSITY OF BRISTOL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
By harnessing the unique properties of quantum mechanics (superposition and entanglement) to encode, transmit and process information, quantum information science offers significant opportunities to revolutionise information and communication technologies.
The far-reaching goal of this project is to build quantum technology demonstrators that can outperform conventional technologies in communications and computation.
For quantum information technologies (QITs) to have as big an impact on society as anticipated, a practical and scalable approach is needed. One promising approach to QITs is the photonics implementation, where single particles of light (photons) are used to encode, transmit and process quantum information – in the form of photonic quantum-bits (qubits). Currently, state-of-the-art experiments are limited to the few-photon regime, occupying many metres of space on an optical table, constructed from bulk optical elements, with no routes to scalability and far from outperforming conventional technologies.
Integrated quantum photonics has recently emerged as a new approach to address these challenges. This research programme will take an engineering approach to QITs and draw upon rapidly growing field of silicon photonics. We will develop a silicon-based quantum technology platform where single-photon sources, circuits and detectors will be integrated into miniature microchip circuits containing thousands of discrete components, enabling breakthroughs in quantum communications and computation, and developing a scalable approach to quantum technologies.
There are no new physics breakthroughs required to achieve the goals of this project, however, there are hard engineering challenges that need to be addressed.