Quantum Memory interface based on multicolor unconditional quantum teleportation
Quantum Memories are crucial technologies in Quantum Communications infrastructures. The ability to store and retrieve quantum information can simplify a complex process and increase the flexibility of current communication networ...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PLEC2021-007669
Distribución de entrelazamiento para Redes Cuánticas (Q-NETW...
504K€
Cerrado
NARWHAL
A Quantum System on Chip for equal access to secure communic...
2M€
Cerrado
Información proyecto EPRoxy
Duración del proyecto: 18 meses
Fecha Inicio: 2024-03-06
Fecha Fin: 2025-09-30
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
161K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Quantum Memories are crucial technologies in Quantum Communications infrastructures. The ability to store and retrieve quantum information can simplify a complex process and increase the flexibility of current communication networks. For this reason, different quantum systems are currently being investigated to produce stable and reliable quantum memories(CITE). Despite their potential, the practical application of these technologies is hindered by intrinsic limitations in their read/write process which is generally based on an optical link. This coupling depends on the specific phenomenon used to store the quantum information, and it imposes stringent requirements on the optical wavelengths used as interface. As a result, two issues arise: Firstly, it's not feasible to connect quantum memories with incompatible wavelengths, and secondly, most quantum memories cannot be integrated with standard communication channels. Thus, implementing Quantum Memories in real-case applications requires developing a new writing/reading approach to overcome this constraint.
In this project, I will demonstrate that unconditional quantum teleportation can overcome the wavelenght requirement. This communication protocol uses both a quantum and classical channel to transfer quantum information between two distinct systems. By employing a two-colour Einstein-Podolsky-Rosen (EPR) vacuum-squeezed entangled state as the quantum channel, we can restrict the quantum memory's constraints to just one side of the connection, enabling us to choose the second wavelength based on the external device. I will carry out this project in collaboration with the Danish Center for Quantum Optics (Quantop) led by Prof. Eugene Polzik at the University of Copenhagen (UCPH).