New states of matter offer an unparalleled testing ground for studying fundamental physics, particularly interacting quantum systems. The EXTREMEQUANTUM project will significantly advance our knowledge of these states by using ext...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2017-84330-R
NUEVAS MICROSCOPIAS DE DISPOSITIVOS PARA VISUALIZAR MATERIAL...
329K€
Cerrado
OPTIMISTIC
Molecular Spin Interactions in Magnetic Fields of Supercondu...
216K€
Cerrado
JCI-2008-2269
Cold atoms, Superconducting qubits, and Spintronics
101K€
Cerrado
NexGenTeN
State of the art simulations of quantum many body systems wi...
2M€
Cerrado
FIS2012-33022
TECNOLOGIAS DE LA INFORMACION CUANTICAS CON ATOMOS, MOLECULA...
103K€
Cerrado
Información proyecto ExtremeQuantum
Duración del proyecto: 71 meses
Fecha Inicio: 2016-03-07
Fecha Fin: 2022-02-28
Líder del proyecto
UNIVERSITY OF WARWICK
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Descripción del proyecto
New states of matter offer an unparalleled testing ground for studying fundamental physics, particularly interacting quantum systems. The EXTREMEQUANTUM project will significantly advance our knowledge of these states by using extreme conditions of magnetic field and pressure to enable a continuous, clean and reversible tuning of quantum interactions, thereby shedding light on the building blocks of exotic magnetism and unconventional superconductivity. By developing the materials and methodology to achieve this, we will push our understanding of quantum systems beyond current limitations and open a route for exploiting the untapped potential of these materials to underpin future technology in fields as diverse as electrical power networks, quantum computation and healthcare.
EXTREMEQUANTUM takes as its starting point recent theoretical and experimental discoveries in the area of quantum materials and will capitalize on a novel measurement technique developed in my research group over the past few years. By utilizing both atomic and molecular substitution, the project will focus on a series of materials that are on the verge of a phase instability. Ultra-high fields and applied pressure will push these systems through the critical region where the state of matter changes and inherently quantum effects dominate. Electronic, magnetic and structural properties will be measured as the tipping point is breached and the resulting data compared with predictions of theoretical models. The results will provide answers to questions of deep concern to modern physics, such how quantum fluctuations, topology and disorder can be used to create states of matter with novel and functional properties.