Quantum Many-Body Dynamics and Noisy Intermediate-Scale Quantum Computers: Inter...
Quantum Many-Body Dynamics and Noisy Intermediate-Scale Quantum Computers: Interconnections, Near-Term Applications, and Novel Simulation Schemes
Simulating the dynamics of quantum many-body systems is notoriously difficult as the computational requirements grow dramatically with increasing system size. While fully-fledged quantum computing may provide a means to handle thi...
Simulating the dynamics of quantum many-body systems is notoriously difficult as the computational requirements grow dramatically with increasing system size. While fully-fledged quantum computing may provide a means to handle this challenge, today's noisy intermediate-scale quantum (NISQ) devices are prone to errors and decoherence. This interdisciplinary project promises significant progress in the understanding of nonequilibrium quantum systems and in leveraging the capabilities of NISQ devices for this purpose. The innovative research is going to capitalize on the concept of quantum typicality to explore near-term applications of random quantum states on NISQ devices and to study the emergence of hydrodynamics in isolated quantum systems. By combining state-of-the-art theoretical and numerical approaches with simulations on available quantum hardware, important insights will furthermore be gained into the universal properties of quantum dynamics in driven-dissipative systems, in monitored circuits consisting of unitary gates and projective measurements, and in many-body localized systems coupled to a thermal bath. Tackling these key areas will provide a deeper understanding of fundamental physics and will unravel the inevitable interaction of NISQ devices with their environment. Results may open up new avenues for robust and scalable simulations on NISQ devices, which is vital as quantum technology continues to mature. Additionally, this project will deliver novel NISQ-inspired classical simulation schemes, which are memory-efficient and will pave the way to answer open questions that are challenging for other methods. Highlighting the strong synergy and profound interplay between quantum many-body dynamics and NISQ devices, this project follows Horizon Europe's strategic plan of developing key digital and emerging technologies and is in line with Europe's Quantum Flagship initiative to foster European excellence in quantum technologies.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.