Quantum Machine Learning Chemical Reactions with Unprecedented Speed and Accura...
Quantum Machine Learning Chemical Reactions with Unprecedented Speed and Accuracy
Large and diverse property data sets of relaxed molecules and crystals, resulting from computationally demanding quantum calculations, have recently been used to train machine learning models of various energetic and electronic pr...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MALAMER
Machine Learning-Assisted simulation of Metalloenzyme’s Reac...
200K€
Cerrado
FIAMMA
Fully Integrating Atomistic Modeling with Machine Learning
2M€
Cerrado
ML Potentials
Constructing Intermolecular Potentials by Combining Physics...
161K€
Cerrado
QNets
Open Quantum Neural Networks from Fundamental Concepts to I...
1M€
Cerrado
Imaging-XChem
Imaging XChem A computational package for ultrafast electro...
150K€
Cerrado
QCLAB
Revolutionary new quantum chemical software for molecular si...
1M€
Cerrado
Información proyecto QML
Duración del proyecto: 76 meses
Fecha Inicio: 2018-01-24
Fecha Fin: 2024-05-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Large and diverse property data sets of relaxed molecules and crystals, resulting from computationally demanding quantum calculations, have recently been used to train machine learning models of various energetic and electronic properties. We propose to advance these techniques to a level where they can also describe reaction profiles, i.e. reactive non-equilibrium processes which traditionally would require quantum chemistry treatment. The resulting quantum machine learning (QML) models will provide reaction profiles for new reactants in real-time and with quantum accuracy. The overall goal is to develop a predictive computational tool which allows chemists to easily optimize reaction conditions, develop new catalysts, or even plan new synthetic pathways.