Isolating and addressing individual quantum systems has allowed for breakthrough results in quantum mechanics. Today, increasing the complexity of the system while maintaining control at the single-quantum level is vital for the n...
Isolating and addressing individual quantum systems has allowed for breakthrough results in quantum mechanics. Today, increasing the complexity of the system while maintaining control at the single-quantum level is vital for the next generation of quantum devices and research. QUINTESSEnCE will take up this challenge by developing interfaces between single photons, spins and phonons, all within one simple physical system, i.e. a single molecule.Fundamental systems like molecules have the inherent advantage, in comparison to artificial structures, of being nominally identical. A molecule can have the coherence properties of an atom even when embedded in a solid, without losing the access and customization opportunities typical instead of the solid state. Molecules differ from atoms in being more complex systems, with rich energy diagrams structured over multiple scales. We propose to leverage this complexity to coherently connect optical frequency photons with microwave spin excitations and gigahertz phonons. Unprecedented control over the molecules’ degrees of freedom will be achieved by integrating them in nanostructured devices. We will develop a ground-breaking lab-in-a-molecule platform, benefiting from the tunability and scalability of molecules, so as to aim at the following main objectives:• Complex states of light: integrating multiple molecular sources of indistinguishable photons on chip• Single-molecule cavity optomechanics: accessing the regime of single-photon strong coupling in an unconventional cavity optomechanical system• Optical addressing of single molecular spins: providing a crucial knob to read out and control the spin state of a single moleculeQUINTESSEnCE will therefore allow us to entering unexplored quantum territories and to develop quantum-technology tools unavailable today. Notably, the outcome of this project will impact a broad scientific community, touching quantum optics, optomechanics and molecular quantum technologies.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.