Atom-light interfaces are vital for a range of potential applications in the coming second quantum revolution, from secure communication to ultra-precise sensors to quantum computers. A new exciting possibility is to arrange atoms...
Atom-light interfaces are vital for a range of potential applications in the coming second quantum revolution, from secure communication to ultra-precise sensors to quantum computers. A new exciting possibility is to arrange atoms in dense, regular arrays, where wave interference leads to strong collective emission. This property has been shown to polynomially or even exponentially improve the efficiency of single-photon-level applications. A frontier still awaiting a breakthrough is in the many-body regime, in particular, to expand the realm of atom arrays interacting with light toward realizing and studying exotic strongly correlated behavior.
In QUINTO (Quantum INteracting Topological Optics), we will propose routes by which such systems can realize many-body states featuring topological order (TO). TOs have attracted significant interest due to wide-ranging implications ranging from possible fault-tolerant quantum computing to surprising fundamental properties such as the emergence of anyonic quasi-particles (being neither bosons nor fermions) and emergent lattice gauge theories. We will use the known physics of TOs within condensed matter physics as a window to developing the concept of many-body quantum optics, and show that, in turn, the arrays provide new ways of creating, understanding and measuring TOs.
We will employ innovative, condensed-matter-inspired theoretical and numerical techniques, breaking state-of-the-art limitations (e. g. on system size), to study two routes towards quantum-optical TOs: arrays in optical cavities and topological bands in free-space arrays. We aim to: (i) demonstrate that long-range interactions, induced by emission and re-absorption of photons, provides a new paradigm for inducing TOs, (ii) elucidate the influence of such interactions on fundamental TO physics, and (iii) show that the output light carries information sufficient to detect a TO (including signatures of anyons).ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.