The principles of quantum mechanics are being used to achieve a new paradigm in metrology, the science of measurement.
This *quantum metrology* increases precision which in turn (i) reveals foundational insight in quantum informat...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto QIIQI
Duración del proyecto: 38 meses
Fecha Inicio: 2020-09-30
Fecha Fin: 2023-12-01
Líder del proyecto
HERIOTWATT UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
213K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The principles of quantum mechanics are being used to achieve a new paradigm in metrology, the science of measurement.
This *quantum metrology* increases precision which in turn (i) reveals foundational insight in quantum information theory
and (ii) promises the next evolution in sensors. Single parameter estimation (e.g. interferometry) is widely investigated and
the optimal resources and classes of measurements are identified. This maturity now allows application of the rigour of
quantum metrology to other fields, such as quantum imaging — including imaging without detection techniques — and
quantum process tomography. The challenge is to extend the quantum metrology framework to multiple parameter
estimation, requiring theoretical and experimental effort to explore and identify the optimal resources and classes of
measurements.
I propose a novel scheme for full quantum process tomography, using multi-parameter quantum metrology combined with
the imaging without detection technique. This unites previously disparate fields to achieve a new paradigm of quantum
measurement physics and precision sensing technology. I will adapt and modify ghost-imaging schemes for simultaneous
object estimation, investigate the role of nonclassical correlations to deepen understanding of quantum measurements and
its information extracting capabilities. This project accelerates standard quantum metrology that until now has focused on
single parameters and single objects. I will use free-space quantum optics for proof-of principle experiments and integrated
silicon quantum photonics to reach higher levels of complexity and capability.
The project unites my expertise in quantum foundations, quantum resources and ultra-high efficiency photon sources, with
the experimental expertise of Dr Jonathan Matthews and colleagues of the Centre for Quantum Photonics, Bristol University
— world leaders in integrated quantum photonics and photonic quantum technology.