Quantum hyperpolarisation for ultrasensitive nuclear magnetic resonance and imag...
Quantum hyperpolarisation for ultrasensitive nuclear magnetic resonance and imaging
Many of the most remarkable contributions of modern science to society have arisen from the interdisciplinary work of scientists enabling novel methods of imaging and sensing. Outstanding examples are nuclear magnetic resonance (N...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
THz-FRaScan-ESR
THz Frequency Rapid Scan Electron Spin Resonance spectrosc...
2M€
Cerrado
QUNS
Quantum Statistical Methods for Nuclear Singlet States in Co...
179K€
Cerrado
PRESOBEN
PREcision Studies with Optically pumped Beams of Exotic Nucl...
2M€
Cerrado
SPECTR
Shaping the future of EPR with cryoprobes and superconductin...
159K€
Cerrado
RTMFRM
Room Temperature Magnetic Resonance Force Microscopy
150K€
Cerrado
Información proyecto HyperQ
Duración del proyecto: 86 meses
Fecha Inicio: 2020-04-08
Fecha Fin: 2027-06-30
Líder del proyecto
UNIVERSITAET ULM
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
9M€
Descripción del proyecto
Many of the most remarkable contributions of modern science to society have arisen from the interdisciplinary work of scientists enabling novel methods of imaging and sensing. Outstanding examples are nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) which have enabled fundamental insights in a broad range of sciences extending from Chemistry to the Life Sciences. However, the key challenge of NMR and MRI is their very low inherent sensitivity due to the weak nuclear spin polarisation under ambient conditions. This makes the extension of magnetic resonance to the nanoscale (small volumes) and to the observation of metabolic processes (low concentrations) impossible.
HyperQ will address this challenge with the development of room-temperature quantum control of solid-state spins to increase nuclear spin polarisation several orders of magnitude above thermal equilibrium and thereby revolutionise the state-of-the-art of magnetic resonance. Essential for this development is the synergy of an interdisciplinary team of world leaders in quantum control and hyperpolarised magnetic resonance to enable the development of quantum control theory (Quantum Software), quantum materials (Quantum Hardware), their integration (Quantum Devices) and applications to biological and medical imaging (Medical Quantum Applications). HyperQ will target major breakthroughs in the field of magnetic resonance, which include chip-integrated hyperpolarisation devices designed to operate in combination with portable magnetic resonance quantum sensors, unprecedented sensitivity of bio-NMR at the nanoscale, and biomarkers of deranged cellular metabolism.
The HyperQ technology will provide access to metabolic processes from the micron to the nanoscale and thereby insights into metabolic signatures of a broad range of disease such as cancer, Alzheimer and the mechanisms behind neurodegenerative disease. This will enable fundamentally new insights into the Life Sciences.