The quantum nature of an electronic fluid is ubiquitous in many solid-state systems subjected to correlations or confinement. This is particularly true for two-dimensional electron gases (2DEGs) in which fascinating quantum states...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2014-55486-P
INTERACCIONES, TOPOLOGIA Y EFECTOS NO-ESTACIONARIOS EN TRANS...
48K€
Cerrado
TopoGraph
Towards topological hybrid states in graphene
146K€
Cerrado
TuneInt2Quantum
Tunable Interactions in 2-dimensional Materials for Quantum...
3M€
Cerrado
RYC-2011-09345
Quantum transport in graphene and topological insulators
184K€
Cerrado
MaPWave
Designing Many-Particle Wavefunctions in Mesoscopic Quantum...
231K€
Cerrado
ANYONIC
Statistics of Exotic Fractional Hall States
2M€
Cerrado
Información proyecto QUEST
Duración del proyecto: 67 meses
Fecha Inicio: 2015-02-23
Fecha Fin: 2020-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The quantum nature of an electronic fluid is ubiquitous in many solid-state systems subjected to correlations or confinement. This is particularly true for two-dimensional electron gases (2DEGs) in which fascinating quantum states of matter, such as the integer and fractional quantum Hall (QH) states, arise under strong magnetic fields. The understanding of QH systems relies on the existence of one-dimensional (1D) conducting channels that propagate unidirectionally along the edges of the system, following the confining potential. Due to the buried nature of 2DEG commonly built in semiconducting heterostructures, the considerable real space structure of this 1D electronic fluid and its energy spectrum remain largely unexplored.
This project consists in exploring at the local scale the intimate link between the spatial structure of QH edge states, coherent transport and the coupling with superconductivity at interfaces. We will use graphene as a surface-accessible 2DEG to perform a pioneering local investigation of normal and superconducting transport through QH edge states. A new and unique hybrid Atomic Force Microscope and Scanning Tunneling Microscope (STM) operating in the extreme conditions required for this physics, i.e. below 0.1 kelvin and up to 14 teslas, will be developed and will allow unprecedented access to the edge of a graphene flake where QH edge states propagate.
Overall, the original combination of magnetotransport measurements with scanning tunnelling spectroscopy will solve fundamental questions on the considerable real-space structure of integer and fractional QH edge states impinged by either normal or superconducting electrodes. Our world-unique approach, which will provide the first STM imaging and spectroscopy of QH edge channels, promises to open a new field of investigation of the local scale physics of the QH effect.