Due to the ongoing miniaturization of devices, one of the central challenges of the 21st century's technology will be to handle quantum effects at the nanoscale. A first fundamental paradigm shift happened in the mid '90s when it...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PRE2019-089308
INFORMATION PROCESSING IN BIOLOGICAL SYSTEMS/QUANTUM INFORMA...
98K€
Cerrado
PRE2019-089702
INFORMATION PROCESSING IN BIOLOGICAL SYSTEMS/QUANTUM INFORMA...
98K€
Cerrado
QON
Quantum optics using nanostructures from many body physics...
2M€
Cerrado
RYC-2008-02867
Quantum transport and decoherence in nanostructures
192K€
Cerrado
EDSP
Engineered dissipation using symmetry protected superconduct...
225K€
Cerrado
Información proyecto QUEVADIS
Líder del proyecto
UNIVERSITAT WIEN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Due to the ongoing miniaturization of devices, one of the central challenges of the 21st century's technology will be to handle quantum effects at the nanoscale. A first fundamental paradigm shift happened in the mid '90s when it was realized that quantum effects, which from the traditional point of view put fundamental limits on the possible miniaturization, could be exploited to do information theoretic tasks impossible with classical devices. The main obstacle in building such quantum devices however is the occurrence of decoherence, by which coherence within the quantum device gets degraded due to the coupling with the environment.<br/>In this proposal, we propose a second paradigm shift by demonstrating that one can actually take advantage of decoherence if engineered in a smart way. The central focus will be the study of quantum processes driven by dissipation, and we will investigate whether quantum coherence and the associated applications can actually be driven by decoherence. The main tools that we plan to use to achieve that goal originate from the theory of quantum entanglement. The timing of this innovative project is actually perfect as the field of entanglement theory is just mature enough to pursue the ambitious goals stated in this proposal.<br/>The main objectives of this proposal are 1. to set up a rigorous mathematical framework for studying fixed points and convergence rates of dissipative processes; 2. to investigate how highly entangled quantum states arising in strongly correlated quantum systems or in a quantum information theoretic context can be created by dissipative processes; 3. to study quantum devices powered by dissipation such as quantum memories and quantum Metropolis devices; 4. to use such devices to come up with novel ways for implementing quantum computation in the presence of decoherence; 5. to study non-equilibrium phase transitions driven by dissipation and associated to that new possible phases of matter.